Skip to main content

Advertisement

Log in

Platinum Nanoparticles as Potent Anticancer and Antimicrobial Agent: Green Synthesis, Physical Characterization, and In-Vitro Biological Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Green nanotechnology provides tools for the transformation of biological systems toward safe and cost-effective approaches of nanomaterial synthesis for biomedical applications. The aim of the current investigation was to mycosynthesis of functional platinum nanoparticles (PtNPs) by Penicillium pinophilum cell-free filtrate using hydrogen hexachloroplatinate (IV) hexahydrate (H2PtCl6) as substrate. The UV–Visible spectroscopy, TEM, XRD, DLS, FTIR, TGA–DSC and GC–MS were used to characterize the mycosynthesized PtNPs. UV–visible spectrum of mycosynthesized PtNPs showed maximum absorption peak at 263 nm. The band gap energy of the PtNPs was estimated as 3.78 eV. TEM showed the PtNPs in different shapes with the size ranged from 2 to 25 nm. DLS demonstrated the size range of 2–30 nm for synthesized PtNPs. A zeta potential of − 43.0 ± 1.0 mV with a single peak was recorded for PtNPs. The XRD peaks 40.3, 46.8 and 68.2 with the plane of platinum crystals (111), (200), and (220) were identified indicating that the PtNPs were face-centered, cubic, and crystalline in nature. Mycosynthesized PtNPs were analyzed by simultaneous TGA–DSC showed thermal stability for PtNPs. The FTIR results showed the presence of some bio-molecules in fungal cell-free filtrate as possible bio-reducing and capping agent of PtNPs. GC–MS analysis of fungal cell-free filtrate showed 10 peaks representative of related compounds. The mycosynthesized PtNPs displayed antimicrobial activity (8.1 ± 0.8 to 24.3 ± 0.8 mm) against various important fungal and bacteria pathogens. They were toxic for cancer cell-line HepG-2 at IC50 value of 184.07 μg/ml. Microscopy images showed morphological changes and reduction of cancer cells populations in PtNPs-treated cell-line. Altogether, our results demonstrated for the first time the green synthesis of PtNPs using Penicillium pinophilum. Synthesized PtNPs were not only active against fungal and bacteria pathogens, but also they showed strong cytotoxic effects against human cancer cell-line HepG-2. Thus, they may be considered as promising chemotherapeutics to combat malignancies and overcome life-threatening infections arisen from multidrug resistant fungi and bacteria in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

All data generated or analyzed during this study are included in this published article.

References

  1. R. K. Kubayashi and G. Nakazato (2020). Front. Microbiol. 11, 1421. https://doi.org/10.3389/fmicb.2020.01421.

    Article  Google Scholar 

  2. M. Gholami-Shabani, F. Sotoodehnejadnematalahi, M. Shams-Ghahfarokhi, A. Eslamifar, and M. Razzaghi-Abyaneh (2021). J. Nanomat. 2021, Article ID 7532660. https://doi.org/10.1155/2021/7532660.

  3. P. Khandel and S. K. Shahi (2018). J. Nanostruct. Chem. 8, 369. https://doi.org/10.1007/s40097-018-0285-2.

    Article  CAS  Google Scholar 

  4. M. Adnan (2021). Inorg. Nano-Met. Chem. 51, 280. https://doi.org/10.1080/24701556.2020.1784231.

    Article  CAS  Google Scholar 

  5. M. Rai, S. Bonde, P. Golinska, J. Trzcińska-Wencel, A. Gade, K. Abd-Elsalam, S. Shende, S. Gaikwad, and A. Ingle (2021). J. Fungi 7, 139. https://doi.org/10.3390/jof7020139.

    Article  CAS  Google Scholar 

  6. J. Huang, L. Lin, D. Sun, H. Chen, D. Yang, and Q. Li (2015). Chem. Soc. Rev. 44, 6330. https://doi.org/10.1039/C5CS00133A.

    Article  CAS  PubMed  Google Scholar 

  7. N. Naimi-Shamel, P. Pourali, and S. Dolatabadi (2019). J. Mycol. Med. 29, 7. https://doi.org/10.1016/j.mycmed.2019.01.005.

    Article  CAS  PubMed  Google Scholar 

  8. M. Gholami-Shabani, A. Akbarzadeh, D. Norouzian, A. Amini, Z. Gholami-Shabani, A. Imani, M. Chiani, G. Riazi, M. Shams-Ghahfarokhi, and M. Razzaghi-Abyaneh (2014). Appl. Biochem. Biotechnol. 172, 4084. https://doi.org/10.1007/s12010-014-0809-2.

    Article  CAS  PubMed  Google Scholar 

  9. M. Jeyaraj, S. Gurunathan, M. Qasim, M. H. Kang, and J. H. Kim (2019). Nanomaterials 9, 1719. https://doi.org/10.3390/nano9121719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. V. R. Yenumula and P. K. Nagadesi (2018). Biogenic synthesis of engineered platinum nanomaterial: a review. Int. J. Sci. Dev. Res. 3, 216.

    Google Scholar 

  11. E. Castro-Longoria, S. D. Moreno-Velasquez, A. R. Vilchis-Nestor, E. Arenas-Berumen, and M. Avalos-Borja (2012). J. Microbiol. Biotechnol. 22, 1000. https://doi.org/10.4014/jmb.1110.10085.

    Article  CAS  PubMed  Google Scholar 

  12. K. Gupta and T. S. Chundawat (2019). Mater. Res. Exp. 6, 1050d6. https://doi.org/10.1088/2053-1591/ab4219.

    Article  CAS  Google Scholar 

  13. C. X. Li, S. Zhao, T. Zhang, L. Xian, L. S. Liao, J. L. Liu, and J. X. Feng (2017). Sci. Rep. 7, 490. https://doi.org/10.1038/s41598-017-00567-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. R. Dobrucka (2019). Saudi J. Biol. Sci. 26, 31. https://doi.org/10.1016/j.sjbs.2016.11.012.

    Article  CAS  PubMed  Google Scholar 

  15. M. Gholami-Shabani, Z. Gholami-Shabani, M. Shams-Ghahfarokhi, A. Akbarzadeh, G. Riazi, and M. Razzaghi-Abyaneh (2016). Int. J. Nanosci. Nanotechnol. 12, 199.

    Google Scholar 

  16. P. Soltani-Horand, H. Vaghari, J. Soltani-Horand, M. Adibpour, and H. Jafarizadeh-Malmiri (2020). Int. J. Nanosci. 19, 1950009. https://doi.org/10.1142/S0219581X19500091.

    Article  CAS  Google Scholar 

  17. H. G. Nada, H. E. Ali, R. R. El-Behery, S. M. Shanab, and E. H. Elshatoury (2021). J. Clust. Sci. 17, 1. https://doi.org/10.1007/s10876-021-02122-4.

    Article  CAS  Google Scholar 

  18. R. Surega, B. Anita, S. Ramakrishnan, K. Gunasekaran, and S. Nakkeran (2020). Int. J. Curr. Microbiol. Appl. Sci. 9, 1939. https://doi.org/10.20546/ijcmas.2020.902.221.

    Article  CAS  Google Scholar 

  19. S. Mourdikoudis, R. M. Pallares, and N. T. Thanh (2018). Nanoscale 10, 12871. https://doi.org/10.1039/C8NR02278J.

    Article  CAS  PubMed  Google Scholar 

  20. N. Farkas and J. A. Kramar (2012). J. Nanopart. Res. 2, 120. https://doi.org/10.1007/s11051-021-05220-6.

    Article  Google Scholar 

  21. M. M. Mollick, B. Bhowmick, D. Mondal, D. Maity, D. Rana, S. K. Dash, and D. Chattopadhyay (2014). RSC Adv. 4, 37838. https://doi.org/10.1039/C4RA07285E.

    Article  CAS  Google Scholar 

  22. S. Sampaio and J. C. Viana (2018). Adv. Nat. Sci.: Nanosci. Nanotechnol. 9, 045002. https://doi.org/10.1088/2043-6254/aae987.

    Article  CAS  Google Scholar 

  23. F. Anum, K. Jabeen, S. Javad, S. Iqbal, A. Tahir, Z. Javed, N. Cruz-Martins, S. A. Ayatollahi, J. Sharifi-Rad, M. M. Alshehri, and W. C. Cho (2021). J. Nanomater. 2021, 2992335. https://doi.org/10.1155/2021/2992335.

    Article  CAS  Google Scholar 

  24. A. W. Bayer, W. M. Kirby, J. C. Sherris, and M. Turck (1966). Am. J. Clin. Pathol. 45, 493.

    Article  Google Scholar 

  25. A. Nanda and S. Majeed (2014). Int. J. Pharm. Pharm. Sci. 6, 609.

    CAS  Google Scholar 

  26. J. L. Rios, M. C. Recio, and A. Villar (1988). J. Ethnopharmacol. 23, 127. https://doi.org/10.1016/0378-8741(88)90001-3.

    Article  CAS  PubMed  Google Scholar 

  27. A. A. Kajani, A. K. Bordbar, S. H. Esfahani, and A. Razmjou (2016). RSC Adv. 6, 63973. https://doi.org/10.1039/C6RA09050H.

    Article  CAS  Google Scholar 

  28. H. Mohammadi, A. Abedi, A. Akbarzadeh, M. J. Mokhtari, H. E. Shahmabadi, M. R. Mehrabi, and M. Chiani (2013). Int. Nano Lett. 3, 28. https://doi.org/10.1186/2228-5326-3-28.

    Article  CAS  Google Scholar 

  29. G. Prasannaraj and P. Venkatachalam (2017). Adv. Nat. Sci. Nanosci. Nanotechnol. 8, 025001. https://doi.org/10.1088/2043-6254/aa6d2c.

    Article  CAS  Google Scholar 

  30. S. N. Syed Abdul Rahman, N. Abdul Wahab, and S. N. Abd Malek (2013). Evid. Based Complement. Altern. Med. 2013, 257108. https://doi.org/10.1155/2013/257108.

    Article  Google Scholar 

  31. K. Liu, P. C. Liu, R. Liu, and X. Wu (2015). Med. Sci. Monit. Basic Res. 21, 15. https://doi.org/10.12659/MSMBR.893327.

    Article  PubMed  PubMed Central  Google Scholar 

  32. S. Burattini and E. Falcieri (2013). Methods Mol. Biol. 1004, 77. https://doi.org/10.1007/978-1-62703-383-1_7.

    Article  CAS  PubMed  Google Scholar 

  33. C. Sakthivel, L. Keerthana, and L. Prabha (2019). Johnson Matthey Technol. Rev. 63, 122. https://doi.org/10.1595/205651319X15498900266305.

    Article  CAS  Google Scholar 

  34. L. Ma, W. Su, J. X. Liu, X. X. Zeng, Z. Huang, W. Li, Z. C. Liu, and J. X. Tang (2017). Mater. Sci. Eng. 77, 963. https://doi.org/10.1016/j.msec.2017.03.294.

    Article  CAS  Google Scholar 

  35. K. S. Siddiqi and A. Husen (2016). Nanoscale Res. Lett. 11, 98. https://doi.org/10.1186/s11671-016-1311-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. N. S. Al-Radadi (2018). Arab. J. Chem. 12, 330. https://doi.org/10.1016/j.arabjc.2018.05.008.

    Article  CAS  Google Scholar 

  37. G. V. Lowry, R. J. Hill, S. Harper, A. F. Rawle, C. O. Hendren, F. Klaessig, U. Nobbmann, P. Sayre, and J. Rumble (2016). Environ. Sci. Nano 3, 953. https://doi.org/10.1039/C6EN00136J.

    Article  CAS  Google Scholar 

  38. P. Suryavanshi, R. Pandit, A. Gade, M. Derita, S. Zachino, and M. Rai (2017). Lebenson Wiss Technol. 81, 188. https://doi.org/10.1016/j.lwt.2017.03.038.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

Research reported in this publication was supported by Elite Researcher Grant Committee under award numbers 958634 and 963646 from the National Institute for Medical Research Development (NIMAD), Tehran, Iran to M.R-A.

Author information

Authors and Affiliations

Authors

Contributions

M.G-S and M.R-A analyzed and interpreted the data and wrote the original manuscript. M.G-S, M.S-G, F.S, A.E and M.R-A conducted the experiments, performed the data curation, and reviewed the manuscript. M.R-A and F.S supervised the study. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Fattah Sotoodehnejadnematalahi or Mehdi Razzaghi-Abyaneh.

Ethics declarations

Conflicts of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami-Shabani, M., Sotoodehnejadnematalahi, F., Shams-Ghahfarokhi, M. et al. Platinum Nanoparticles as Potent Anticancer and Antimicrobial Agent: Green Synthesis, Physical Characterization, and In-Vitro Biological Activity. J Clust Sci 34, 501–516 (2023). https://doi.org/10.1007/s10876-022-02225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02225-6

Keywords

Navigation