Skip to main content

Advertisement

Log in

Phyto-fabricated ZnO nanoparticles for anticancer, photo-antimicrobial effect on carbapenem-resistant/sensitive Pseudomonas aeruginosa and removal of tetracycline

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Alternanthera sessilis (AS) leaf extract was used to synthesize zinc oxide nanoparticles (ZnO NPs). Bioanalytical characterization techniques such as X-ray diffraction (XRD) and field emission scanning electron microscope (FESEM) confirmed the formation of crystalline ZnO NPs with average sizes of 40 nm. The AS-ZnO NPs antimicrobial activity was analyzed under dark (D) and white light (WL) conditions. The improved antimicrobial activity was observed against Escherichia coli, Staphylococcus aureus and Bacillus subtilis at the minimal inhibitory concentration (MIC) of 125 and 62.5 µg/mL under WL than the D at 125 and 250 µg/mL for E. coli, B. subtilis, and Pseudomonas aeruginosa, respectively. In contrast, the growth of P. aeruginosa and S. aureus was not completely inhibited until 1 mg/mL AS-ZnO NPs under WL and D. Similarly, AS-ZnO NPs displayed a weaker inhibitory effect against carbapenem-sensitive P. aeruginosa (CSPA) and carbapenem-resistant P. aeruginosa (CRPA) strains of PAC023, PAC041 and PAC032, PAC045 under D. Interestingly, the distinct inhibitory effect was recorded against CSPA PAC041 and CRPA PAC032 in which the bacteria growth was inhibited 99.9% at 250, 500 µg/mL under WL. The cytotoxicity results suggested AS-ZnO NPs demonstrated higher toxicity to MCF-7 breast cancer cells than the RAW264.7 macrophage cells. Further, AS-ZnO NPs exhibited higher catalytic potential against tetracycline hydrochloride (TC-H) degradation at 65.6% and 60.8% under WL than the dark at 59.35% and 48.6% within 120 min. Therefore, AS-ZnO NPs can be used to design a photo-improved antimicrobial formulation and environmental catalyst for removing TC-H from wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data represented in this article are available on request from the corresponding author.

References

  1. Cortez J, Rosário E, Pires JE, Taborda Lopes J, Francisco M, Vlieghe E, Brito M (2017) Antimicrobial storage and antibiotic knowledge in the community: a cross-sectional pilot study in north-western Angola. Int J Infect Dis 60:83–87

    Article  PubMed  Google Scholar 

  2. Kuehn BM (2021) Antibiotic use in UKs COVID-19 patients often unnecessary. JAMA 326:214

    CAS  PubMed  Google Scholar 

  3. Abromaitis V, Svaikauskaite J, Sulciute A, Sinkeviciute D, Zmuidzinaviciene N, Misevicius S, Tichonovas M, Urniezaite I, Jankunaite D, Urbonavicius M, Varnagiris S, Dzingeleviciene R, Baranauskis K, Martuzevicius D (2022) Ozone-enhanced TiO2 nanotube arrays for the removal of COVID-19 aided antibiotic ciprofloxacin from water: process implications and toxicological evaluation. J Environ Manage 318:115515

    Article  CAS  PubMed  Google Scholar 

  4. Li X, Gui R, Li J, Huang R, Shang Y, Zhao Q, Liu H, Jiang H, Shang X, Wu X, Nie X (2021) Novel multifunctional silver nanocomposite serves as a resistance-reversal agent to synergistically combat carbapenem-resistant Acinetobacter baumannii. ACS Appl Mater Interfaces 13:30434–30457

    Article  CAS  PubMed  Google Scholar 

  5. Reyes J, Komarow L, Chen L, Ge L, Hanson BM, Cober E, Herc E, Alenazi T, Kaye KS, Garcia-Diaz JJ (2023) Global epidemiology and clinical outcomes of carbapenem-resistant Pseudomonas aeruginosa and associated carbapenemases (POP) a prospective cohort study. Lancet Microbe 4:e159–e170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giani T, Arena F, Pollini S, Bassetti M, Di Pilato V, D’Andrea MM, Henrici De Angelis L, Rossolini GM (2018) Italian nationwide survey on Pseudomonas aeruginosa from invasive infections: activity of ceftolozane/tazobactam and comparators and molecular epidemiology of carbapenemase producers. J Antimicrob Chemother 73:664–671

    Article  CAS  PubMed  Google Scholar 

  7. Doi Y (2019) Treatment options for carbapenem-resistant gram-negative bacterial infections. Clin Infect Dis 69:565–575

    Article  Google Scholar 

  8. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action applications molecular biology and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ion SG, Pavel OD, Guzo N, Tudorache M, Coman SM, Parvulescu VI, Cojocaru B, Jacobsen EEJC (2022) Use of photocatalytically active supramolecular organic-inorganic magnetic composites as efficient route to remove β-lactam antibiotics from water. Catalysts 12:1044

    Article  CAS  Google Scholar 

  10. Wang J, Li P, Zhao Y, Zeng X (2022) Nb/N Co-Doped Layered Perovskite Sr2TiO4: preparation and enhanced photocatalytic degradation tetracycline under visible light. Int J Mol Sci 23:10927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lu Z, Ling Y, Sun W, Liu C, Mao T, Ao X, Huang T (2022) Antibiotics degradation by UV/chlor(am)ine advanced oxidation processes: a comprehensive review. Environ Pollut 308:119673

    Article  CAS  PubMed  Google Scholar 

  12. Yu Y, Wang J, Yan Z, Jing Q, Liu P, Xu B (2022) Supramolecular precursor strategy to construct g-C3N4/Silica hybrid nanosheets for photocatalytic degradation of dye and antibiotic pollutants. Nanomaterials 12:3108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Manasa DJ, Chandrashekar KR, Kumar MA, Suresh D, Kumar DJ, Ravikumar CR, Bhattacharya T, Murthy HC (2021) Proficient synthesis of zinc oxide nanoparticles from Tabernaemontana heyneana Wall. via green combustion method: antioxidant anti-inflammatory antidiabetic anticancer and photocatalytic activities. Results Chem 3:100178

    Article  CAS  Google Scholar 

  14. Khan I, Saeed K, Khan I (2019) Nanoparticles: properties, applications and toxicities. Arab J Chem 12:908–931

    Article  CAS  Google Scholar 

  15. Kabeerdass N, Thangasamy S, Murugesan K, Arumugam N, Almansour AI, Kumar RS, Velmurugan P, Vijayanand S, Nooruddin T, Mohanavel V, Sivakumar S, Mathanmohun M (2022) Embedding green synthesized zinc oxide nanoparticles in cotton fabrics and assessment of their antibacterial wound healing and cytotoxic properties: an eco-friendly approach. Int J Curr Microbiol Appl Sci 11:875–885

    CAS  Google Scholar 

  16. Ali A, Muslim M, Neogi I, Afzal M, Alarifi A, Ahmad M (2022) Construction of a 3D metal-organic framework and its composite for water remediation via selective adsorption and photocatalytic degradation of hazardous dye. ACS Omega 7:24438–24451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Al-luhaibi AA, Sendi RK (2022) Synthesis, potential of hydrogen activity, biological and chemical stability of zinc oxide nanoparticle preparation by sol–gel: a review. J Rad Res Appl Sci 15:238–254

    CAS  Google Scholar 

  18. Aghili F, Hoomehr B, Saidi R, Raeissi K (2022) Synthesis and electrophoretic deposition of zinc oxide and zinc oxide-bioactive glass composite nanoparticles on AZ31 Mg Alloy for biomedical applications. Ceram Int 48:34013–34024

    Article  CAS  Google Scholar 

  19. Chauhan N, Singh V, Kumar S, Kumari M, Sirohi K (2019) Synthesis of sulphur & indium co-doped mesoporous zinc oxide nanoparticles via hydrothermal method to study their photocatalytic activity. Optik 185:838–846

    Article  ADS  CAS  Google Scholar 

  20. Akgul G, Akgul FA, Attenkofer K, Winterer M (2013) Structural properties of zinc oxide and titanium dioxide nanoparticles prepared by chemical vapor synthesis. J Alloy Compd 554:177–181

    Article  CAS  Google Scholar 

  21. Bai X, Chen W, Wang B, Sun T, Wu B, Wang Y (2022) Photocatalytic degradation of some typical antibiotics: recent advances and future outlooks. Int J Mol Sci 23:8130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Indhira D, Krishnamoorthy M, Ameen F, Bhat SA, Arumugam K, Ramalingam S, Priyan SR, Kumar GS (2022) Biomimetic facile synthesis of zinc oxide and copper oxide nanoparticles from Elaeagnus indica for enhanced photocatalytic activity. Environ Res 212:113323

    Article  CAS  PubMed  Google Scholar 

  23. Qadir A, Jahan S, Aqil M, Warsi MH, Alhakamy NA, Alfaleh MA, Khan N, Ali A (2021) Phytochemical-based nano-pharmacotherapeutics for management of burn wound healing. Gels 7:209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mondal H, Saha S, Awang K, Hossain H, Ablat A, Islam MK, Jahan IA, Sadhu SK, Hossain MG, Shilpi JA, Uddin SJ (2014) Central-stimulating and analgesic activity of the ethanolic extract of Alternanthera sessilis in mice. BMC Complement Altern Med 14:398. https://doi.org/10.1186/1472-6882-14-398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. George S, Bhalerao SV, Lidstone EA, Ahmad IS, Abbasi A, Cunningham BT, Watkin KL (2010) Cytotoxicity screening of Bangladeshi medicinal plant extracts on pancreatic cancer cells. BMC Complement Altern Med 10(1):11

    Article  Google Scholar 

  26. Othman A, Ismail A, Hassan FA, Yusof BNM, Khatib AJ (2016) Comparative evaluation of nutritional compositions, antioxidant capacities, and phenolic compounds of red and green sessile joyweed (Alternanthera sessilis). J Funct Foods 21:263–271

    Article  CAS  Google Scholar 

  27. Firdhouse MJ, Lalitha P (2013) Biosynthesis of silver nanoparticles using the extract of Alternanthera sessilis—antiproliferative effect against prostate cancer cells. Cancer Nanotechnol 4:137–143

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qian L, Su W, Wang Y, Dang M, Zhang W, Wang C (2019) Synthesis and characterization of gold nanoparticles from aqueous leaf extract of Alternanthera sessilis and its anticancer activity on cervical cancer cells (HeLa). Artif Cells Nanomed Biotechnol 47:1173–1180

    Article  CAS  PubMed  Google Scholar 

  29. Zheng F, Martins PM, Queirós JM, Tavares CJ, Vilas-Vilela JL, Lanceros-Méndez S, Reguera J (2022) Size effect in hybrid TiO2:Au nanostars for photocatalytic water remediation applications. Int J Mol Sci 23:13741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Batterjee MG, Nabi A, Kamli MR, Alzahrani KA, Danish EY, Malik MA (2022) Green hydrothermal synthesis of zinc oxide nanoparticles for UV-light-induced photocatalytic degradation of ciprofloxacin antibiotic in an aqueous environment. Catalysts 12:1347

    Article  CAS  Google Scholar 

  31. Liu YJ, He LL, Mustapha A, Li H, Hu Z, Lin MS (2009) Antibacterial activities of zinc oxide nanoparticles against Escherichia coli O157: H7. J Appl Microbiol 107:1193–1201

    Article  CAS  PubMed  Google Scholar 

  32. Krainoi A, Prasert W, Kesakomol P, Thongdee P, Nitchaphanit S, Sungsirin N, Boonsiri T, Watanaveeradej V, Ounjai K, Nakaramontri Y (2023) Effect of modified zinc oxide nanoparticles on enhancement of mechanical, thermal and antibacterial properties of disinfectant natural rubber latex foams. Mater Today Commun 35:105601

    Article  CAS  Google Scholar 

  33. Murali M, Kalegowda N, Gowtham HG, Ansari MA, Alomary MN, Alghamdi S, Shilpa N, Singh SB, Thriveni MC, Aiyaz M, Angaswamy N, Lakshmidevi N, Adil SF, Hatshan MR, Amruthesh KN (2021) Plant-mediated zinc oxide nanoparticles: advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics 13:1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Motelica L, Vasile B-S, Ficai A, Surdu A-V, Ficai D, Oprea O-C, Andronescu E, Jinga DC, Holban AM (2022) Influence of the alcohols on the ZnO synthesis and its properties: the photocatalytic and antimicrobial activities. Pharmaceutics 14:2842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kamli MR, Malik MA, Srivastava V, Sabir JSM, Mattar EH, Ahmad A (2021) Biogenic ZnO nanoparticles synthesized from origanum vulgare abrogates quorum sensing and biofilm formation in opportunistic pathogen Chromobacterium violaceum. Pharmaceutics 13:1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liu YC, Li J, Ahn J, Pu J, Rupa EJ, Huo Y, Yang DC (2020) Biosynthesis of zinc oxide nanoparticles by one-pot green synthesis using fruit extract of Amomum longiligulare and its activity as a photocatalyst. Optik 218:165245

    Article  ADS  CAS  Google Scholar 

  37. Maheo AR, Scholastica Mary Vithiya B, Augustine Arul Prasad T (2022) Biosynthesis of chitosan and Eupatorium adenophorum mediated zinc oxide nanoparticles and their biological and photocatalytic activities. Mater Today Proc 65:298–312

    Article  CAS  Google Scholar 

  38. Ali ZA, Shudirman I, Yahya R, Venkatraman G, Hirad AH, Ansari SA (2022) Green synthesis of ZnO nanostructures using Pyrus pyrifolia: antimicrobial. Photocat Dielectr Prop 12:1808

    CAS  Google Scholar 

  39. Cui Y, Zhao Y, Tian Y, Zhang W, Lü X, Jiang X (2012) The molecular mechanism of action of bactericidal gold nanoparticles on Escherichia coli. Biomaterials 33:2327–2333

    Article  CAS  PubMed  Google Scholar 

  40. Mostafa HY, El-Sayyad GS, Nada HG, Ellethy RA, Zaki EG (2023) Promising antimicrobial and antibiofilm activities of Orobanche aegyptiaca extract-mediated bimetallic silver-selenium nanoparticles synthesis: effect of UV-exposure, bacterial membrane leakage reaction mechanism, and kinetic study. Arch Biochem Biophys 736:109539

    Article  CAS  PubMed  Google Scholar 

  41. Senthilkumar G, Sakthivelu A, Abdur Rahman M, Parameswari P (2023) Enhancement of antibacterial and anticancer properties lanthanum insight into zinc oxide nanoparticles prepared via coprecipitation process. Inorg Chem Commun 155:111081

    Article  CAS  Google Scholar 

  42. Priyadarshini S, Sonsudin F, Mainal A, Yahya R, Gopinath V, Vadivelu J, Alarjani KM, Al Farraj DA, Yehia HM (2021) Phytosynthesis of biohybrid nano-silver anchors enhanced size dependent photocatalytic, antibacterial, anticancer properties and cytocompatibility. Process Biochem 101:59–71

    Article  CAS  Google Scholar 

  43. Sakthi Mohan P, Sonsuddin F, Mainal AB, Yahya R, Venkatraman G, Vadivelu J, Al-Farraj DA, Al-Mohaimeed AM, Alarjani KM (2021) Facile in-situ fabrication of a ternary nanocomposite for enhanced bactericidal and biocompatibility properties. Antibiotics 10:86

    Article  PubMed  PubMed Central  Google Scholar 

  44. George D, Mallery P (2019) IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge

    Book  Google Scholar 

  45. Hwong CS, Leong KH, Abdul Aziz A, Mat Junit S, Mohd Noor S, Kong KW (2022) Alternanthera sessilis: Uncovering the nutritional and medicinal values of an edible weed. J Ethnopharmacol 298:115608

    Article  CAS  PubMed  Google Scholar 

  46. Thi TUD, Nguyen TT, Thi YD, Thi KHT, Phan BT, Pham KN (2020) Green synthesis of ZnO nanoparticles using orange fruit peel extract for antibacterial activities. RSC Adv 10(23899):23907

    Google Scholar 

  47. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Hussin SM (2016) Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J Colloid Interface Sci 466:113–119

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Anjali K, Sangeetha B, Raghunathan R, Devi G, Dutta S (2021) Seaweed mediated fabrication of zinc oxide nanoparticles and their antibacterial antifungal and anticancer applications. ChemistrySelect 6:647–656

    Article  CAS  Google Scholar 

  49. Vankudoth S, Dharavath S, Veera S, Maduru N, Chada R, Chirumamilla P, Gopu C, Taduri S (2022) Green synthesis, characterization, photoluminescence and biological studies of silver nanoparticles from the leaf extract of Muntingia calabura. Biochem Biophys Res Commun 630:143–150

    Article  CAS  PubMed  Google Scholar 

  50. Jobe MC, Mthiyane DMN, Mwanza M, Onwudiwe DC (2022) Biosynthesis of zinc oxide and silver/zinc oxide nanoparticles from Urginea epigea for antibacterial and antioxidant applications. Heliyon 8:e12243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Momeni SS, Nasrollahzadeh M, Rustaiyan A (2016) Green synthesis of the Cu/ZnO nanoparticles mediated by Euphorbia prolifera leaf extract and investigation of their catalytic activity. J Colloid Interface Sci 472:173–179

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Hou T, Sankar Sana S, Li H, Wang X, Wang Q, Boya VKN, Vadde R, Kumar R, Kumbhakar DV, Zhang Z, Mamidi N (2022) Development of plant protein derived tri angular shaped nano zinc oxide particles with inherent antibacterial and neurotoxicity properties. Pharmaceutics 14:2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jaithon T, Ruangtong J, T-Thienprasert J, T-Thienprasert NP (2022) Effects of waste-derived ZnO nanoparticles against growth of plant pathogenic bacteria and epidermoid carcinoma cells. Crystals 12:779

    Article  CAS  Google Scholar 

  54. Motelica L, Oprea O-C, Vasile B-S, Ficai A, Ficai D, Andronescu E, Holban AM (2023) Antibacterial activity of solvothermal obtained ZnO nanoparticles with different morphology and photocatalytic activity against a dye mixture: methylene blue rhodamine B and methyl orange. Int J Mol Sci 24:5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Benitez-Salazar MI, Niño-Castaño VE, Dueñas-Cuellar RA, Caldas-Arias L, Fernández I, Rodríguez-Páez JE (2021) Chemical synthesis versus green synthesis to obtain ZnO powders: evaluation of the antibacterial capacity of the nanoparticles obtained by the chemical method. J Environ Chem Eng 9:106544

    Article  CAS  Google Scholar 

  56. Wu H, Meng Y, Yu M, Yang H (2023) Modulating the antibacterial activity of ZnO/talc by balancing the monodispersity of ZnO nanoparticles. Appl Clay Sci 242:107024

    Article  CAS  Google Scholar 

  57. Lakshmi Prasanna V, Vijayaraghavan RJL (2015) Insight into the mechanism of antibacterial activity of ZnO: surface defects mediated reactive oxygen species even in the dark. Langmuir 31:9155–9162

    Article  CAS  PubMed  Google Scholar 

  58. Selvanathan V, Aminuzzaman M, Tan LX, Win YF, Guan Cheah ES, Heng MH, Tey L-H, Arullappan S, Algethami N, Alharthi SS, Sultana S, Shahiduzzaman M, Abdullah H, Aktharuzzaman M (2022) Synthesis, characterization, and preliminary in vitro antibacterial evaluation of ZnO nanoparticles derived from soursop (Annona muricata L.) leaf extract as a green reducing agent. J Market Res 20:2931–2941

    CAS  Google Scholar 

  59. Mahendra C, Murali M, Manasa G, Ponnamma P, Abhilash MR, Lakshmeesha TR, Satish A, Amruthesh KN, Sudarshana MS (2017) Antibacterial and antimitotic potential of bio-fabricated zinc oxide nanoparticles of Cochlospermum religiosum (L.). Microb Pathog 110:620–629

    Article  CAS  PubMed  Google Scholar 

  60. El-Gendy AO, Nawaf KT, Ahmed E, Samir A, Hamblin MR, Hassan M, Mohamed T (2022) Preparation of zinc oxide nanoparticles using laser-ablation technique: retinal epithelial cell (ARPE-19) biocompatibility and antimicrobial activity when activated with femtosecond laser. J Photochem Photobiol, B 234:112540

    Article  CAS  PubMed  Google Scholar 

  61. Mani VM, Nivetha S, Sabarathinam S, Barath S, Das MPA, Basha S, Elfasakhany A, Pugazhendhi A (2022) Multifunctionalities of mycosynthesized zinc oxide nanoparticles (ZnONPs) from Cladosporium tenuissimum FCBGr: Antimicrobial additives for paints coating, functionalized fabrics and biomedical properties. Prog Org Coat 163:106650

    Article  CAS  Google Scholar 

  62. Xu H, Xu H, Ma S, Wei Y, He X, Guo C, Wang Y, Liang Z, Hu Y, Zhao L, Lian X, Huang D (2023) Bifunctional electrospun poly (L-lactic acid) membranes incorporating black phosphorus nanosheets and nano-zinc oxide for enhanced biocompatibility and antibacterial properties in catheter materials. J Mech Behav Biomed Mater 142:105884

    Article  CAS  PubMed  Google Scholar 

  63. Iqbal Hidayat M, Adlim M, Suhartono S, Hayati Z, Bakar NHHA (2023) Antimicrobial air filter made of chitosan-ZnO nanoparticles immobilized on white silica gel beads. Arab J Chem 16:104967

    Article  CAS  Google Scholar 

  64. Ghaffarlou M, Sütekin SD, Hammamchi H, İlk S, Güven O, Barsbay M (2022) Poly(acrylic acid)-b-Poly(vinylamine) copolymer: decoration with silver nanoparticles, antibacterial properties, quorum sensing activity, and cytotoxicity on breast cancer and fibroblast cell lines. ACS Appl Polymer Mater 4:7268–7281

    Article  CAS  Google Scholar 

  65. Saha R, Subramani K, Dey S, Sikdar S, Incharoensakdi A (2023) Physicochemical properties of green synthesised ZnO nanoparticles and utilisation for treatment of breast cancer. Process Biochem 129:170–184

    Article  CAS  Google Scholar 

  66. Al Awadh AA, Shet AR, Patil LR, Shaikh IA, Alshahrani MM, Nadaf R, Mahnashi MH, Desai SV, Muddapur UM, Achappa S, Hombalimath VS, Khan AA, Gouse HSM, Iqubal SMS, Kumbar V (2022) Sustainable synthesis and characterization of zinc oxide nanoparticles using Raphanus sativus extract and its biomedical applications. Crystals 12:1142

    Article  CAS  Google Scholar 

  67. Singh C, Anand SK, Upadhyay R, Pandey N, Kumar P, Singh D, Tiwari P, Saini R, Tiwari KN, Mishra SK, Tilak R (2023) Green synthesis of silver nanoparticles by root extract of Premna integrifolia L. and evaluation of its cytotoxic and antibacterial activity. Mater Chem Phys 297:127413

    Article  CAS  Google Scholar 

  68. Prakashkumar N, Pugazhendhi A, Brindhadevi K, Garalleh HAL, Garaleh M, Suganthy N (2023) Comparative study of zinc oxide nanoparticles synthesized through biogenic and chemical route with reference to antibacterial, antibiofilm and anticancer activities. Environ Res 220:115136

    Article  CAS  PubMed  Google Scholar 

  69. Rajendran R, Mani A (2020) Photocatalytic, antibacterial and anticancer activity of silver-doped zinc oxide nanoparticles. J Saudi Chem Soc 24:1010–1024

    Article  CAS  Google Scholar 

  70. Singh TA, Das J, Sil PC (2020) Zinc oxide nanoparticles: A comprehensive review on its synthesis, anticancer and drug delivery applications as well as health risks. Adv Coll Interface Sci 286:102317

    Article  CAS  Google Scholar 

  71. Mahdizadeh R, Homayouni‐Tabrizi M, Neamati A, Seyedi SMR, Tavakkol Afshari HS (2019) Green synthesized‐zinc oxide nanoparticles, the strong apoptosis inducer as an exclusive antitumor agent in murine breast tumor model and human breast cancer cell lines (MCF7). J Cell Biochem 120:17984–17993

    Article  CAS  PubMed  Google Scholar 

  72. Omran AME (2023) Characterization of green route synthesized zinc oxide nanoparticles using Cyperus rotundus rhizome extract: antioxidant, antibacterial, anticancer and photocatalytic potential. J Drug Deliv Sci Technol 79:104000

    Article  CAS  Google Scholar 

  73. Chandrasekaran S, Anusuya S, Anbazhagan V (2022) Anticancer, anti-diabetic, antimicrobial activity of zinc oxide nanoparticles: a comparative analysis. J Mol Struct 1263:133139

    Article  CAS  Google Scholar 

  74. Yang T, Chen J, Yang X, Yang L, Liu X, Liu Z, Zheng H, Wang Y, Li Y, Gao Y, Que M (2023) A novel Z-scheme heterojunction Bi12O17Br2/TiO2 with exposed 001 facet nanoparticles for the degradation of tetracycline under visible light. Mater Today Commun 34:105187

    Article  CAS  Google Scholar 

  75. Ding C, Zhu Q, Yang B, Petropoulos E, Xue L, Feng Y, He S, Yang L (2023) Efficient photocatalysis of tetracycline hydrochloride (TC-HCl) from pharmaceutical wastewater using AgCl/ZnO/g-C3N4 composite under visible light: process and mechanisms. J Environ Sci 126:249–262

    Article  CAS  Google Scholar 

  76. Lv Y, Gong Z, Ren Z, Guan Y, Wu J, Lv KJC (2023) Photocatalytic degradation of tetracycline hydrochloride by zinc oxide/polypyrrole/carbon nanotubes. ChemistrySelect 8:e202204762

    Article  CAS  Google Scholar 

  77. Dhiman P, Rana G, Kumar A, Dawi EA, Sharma G (2023) Rare earth doped ZnO nanoparticles as spintronics and photo catalyst for degradation of pollutants. Molecules 28:2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Abdullahi Ari H, Adewole AO, Ugya AY, Asipita OH, Musa MA, Feng WJET (2023) Biogenic fabrication and enhanced photocatalytic degradation of tetracycline by bio structured ZnO nanoparticles. Environ Technol 44:1351–1366

    Article  CAS  PubMed  Google Scholar 

  79. Chang Y-C, Lin Y-R, Chen S-W, Chou C-M (2022) Density-controlled growth of ZnO nanowalls for high-performance photocatalysts. Materials 15:9008

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. MohammedAl-MusawiKareemZarrabiAl-Ma’abreh AATJSLMAM (2020) Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles. Arab J Chem 13:4629–4643

    Article  Google Scholar 

  81. Alhokbany N, Ahamad T, Alshehri SM (2022) Fabrication of highly porous ZnO/Ag2O nanoparticles embedded in N-doped graphitic carbon for photocatalytic degradation of tetracycline. J Environ Chem Eng 10:107681

    Article  CAS  Google Scholar 

  82. Arabkhani P, Saeedi N, Sadeghi H, Nouripour-Sisakht S, Gharaghani M, Asfaram A (2023) Plant extracts-mediated green synthesis of zinc oxide/carbon nanofiber nanocomposites with highly efficient photocatalytic and antimicrobial properties for wastewater treatment. J Water Process Eng 54:104020

    Article  Google Scholar 

  83. Zhu Y, Wang L, Xu W, Xu Z, Yuan J, Zhang GJH (2022) ZnO/Cu2O/g-C3N4 heterojunctions with enhanced photocatalytic activity for removal of hazardous antibiotics. Heliyon 8:e12644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hosny M, Fawzy M, Eltaweil AS (2022) Green synthesis of bimetallic Ag/ZnO@Biohar nanocomposite for photocatalytic degradation of tetracycline, antibacterial and antioxidant activities. Sci Rep 12:7316

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. Spoială A, Ilie C-I, Dolete G, Croitoru A-M, Surdu V-A, Trușcă R-D, Motelica L, Oprea O-C, Ficai D, Ficai A, Andronescu E, Dițu L-M (2022) Preparation and characterization of chitosan/TiO2 composite membranes as adsorbent materials for water purification. Membranes 12:804

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project no. (IFKSUOR3-588-1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, validation, and writing—original draft preparation, G.V.; formal analysis, investigation, and manuscript writing, P.S; conducting experiments, revision, data curation, and statistical analysis, M.M.M. and K-C.W; planning research activity and management, P.S.A.R; data presentation and visualization, K.M.V; study materials resources, data interpretation, and statistical data analysis, A.A.A, A.H.H., and S.W;. and all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Gopinath Venkatraman.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Venkatraman, G., Mohan, P.S., Mashghan, M.M. et al. Phyto-fabricated ZnO nanoparticles for anticancer, photo-antimicrobial effect on carbapenem-resistant/sensitive Pseudomonas aeruginosa and removal of tetracycline. Bioprocess Biosyst Eng (2024). https://doi.org/10.1007/s00449-024-02984-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00449-024-02984-8

Keywords

Navigation