Skip to main content
Log in

Cauliflower-like Nickel Sulfide Nanostructures: Preparation, Optical Properties, Catalytic and Photocatalytic Activities

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Semiconductor photocatalysis such as nickel sulfide has drawn much consideration from scientists in the current decade. The photocatalytic procedure is an eco-friendly process that recognized as a promising alternative for removing several hazardous pollutants. Attempts to find simple, inexpensive, and environmentally friendly procedures for the synthesis of high-purity single-phase nickel sulfide have received considerable attention. Here we demonstrate the preparation of nickel sulfide nanostructures via an eco-friendly hydrothermal process through a reaction of nickel sulfate and a new sulfur source of 1-benzylidenethiosemicarbazide being a thio Schiff-base compound. The effects of some reaction parameters, including solvent type, temperature, and duration of reaction on size and morphology of NiS nanoparticles were investigated. The FE-SEM micrographs showed the interesting cauliflower-like structures of the synthesized NiS nanoparticles. The absorption spectrum revealed a blue shift in the band gap of the synthesized NiS nanoparticles to bulk one due to small dimensions and disciplined arrays of cauliflower-like structures. The catalytic and photocatalytic abilities of the as-synthesized nickel sulfide product were surveyed by studying the catalytic reduction of 4-nitrophenol to 4-aminophenol and the color removal of some organic dye pollution under UV irradiation in water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A. Gour and N. K. Jain (2019). Artificial cells, nanomedicine, and biotechnology 47, 844–851.

    Article  CAS  PubMed  Google Scholar 

  2. I. Hussain, N. Singh, A. Singh, H. Singh, and S. Singh (2016). Biotechnology letters 38, 545–560.

    Article  CAS  PubMed  Google Scholar 

  3. S. Zinatloo-Ajabshir, M. S. Morassaei, and M. Salavati-Niasari (2019). Composites Part B: Engineering 167, 643–653.

    Article  CAS  Google Scholar 

  4. S. Ahmadian-Fard-Fini, M. Salavati-Niasari, and D. Ghanbari (2018). Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 203, 481–493.

    Article  CAS  PubMed  Google Scholar 

  5. F. Ansari, A. Sobhani, and M. Salavati-Niasari (2016). Journal of Magnetism and Magnetic Materials 410, 27–33.

    Article  CAS  Google Scholar 

  6. S. M. Hosseinpour-Mashkani, F. Mohandes, M. Salavati-Niasari, and K. Venkateswara-Rao (2012). Materials Research Bulletin 47, 3148–3159.

    Article  CAS  Google Scholar 

  7. A. Salehabadi, M. Salavati-Niasari, and M. Ghiyasiyan-Arani (2018). Journal of Alloys and Compounds 745, 789–797.

    Article  CAS  Google Scholar 

  8. O. O. Balayeva, A. A. Azizov, M. B. Muradov, A. M. Maharramov, G. M. Eyvazova, R. M. Alosmanov, Z. Q. Mamiyev, and Z. A. Aghamaliyev (2016). Materials Research Bulletin 75, 155–161.

    Article  CAS  Google Scholar 

  9. R. Monsef, M. Ghiyasiyan-Arani, and M. Salavati-Niasari (2019). Journal of environmental management 230, 266–281.

    Article  CAS  PubMed  Google Scholar 

  10. Z. Pan, Z. Dai, and Z. L. Wang (2002). Applied Physics Letters 80, 309–311.

    Article  CAS  Google Scholar 

  11. M. Shakouri-Arani and M. Salavati-Niasari (2014). Journal of industrial and engineering chemistry 20, 3179–3185.

    Article  CAS  Google Scholar 

  12. J. Yu, J. C. Yu, W. Ho, L. Wu, and X. Wang (2004). Journal of the American Chemical Society 126, 3422–3423.

    Article  CAS  PubMed  Google Scholar 

  13. M. Salavati-Niasari (2005). Chemistry letters 34, 244–245.

    Article  CAS  Google Scholar 

  14. Y. Fazli, S. M. Pourmortazavi, I. Kohsari, M. S. Karimi, and M. Tajdari (2016). Journal of Materials Science: Materials in Electronics 27, 7192–7199.

    CAS  Google Scholar 

  15. D. Pourjafari, S. Saeednia, P. Iranmanesh, and M. H. Ardakani (2019). Journal of Cluster Science 30, 571–580.

    Article  CAS  Google Scholar 

  16. S. M. Pourmortazavi, Z. Marashianpour, M. S. Karimi, and M. Mohammad-Zadeh (2015). Journal of Molecular Structure 1099, 232–238.

    Article  CAS  Google Scholar 

  17. H. R. Rajabi and M. Farsi (2015). Journal of Molecular Catalysis A: Chemical 399, 53–61.

    Article  CAS  Google Scholar 

  18. H. R. Rajabi and M. Farsi (2015). Materials Science in Semiconductor Processing 31, 478–486.

    Article  CAS  Google Scholar 

  19. S. Saeednia, P. Iranmanesh, M. H. Ardakani, and T. Vafaei (2019). Journal of Cluster Science 30, 105–113.

    Article  CAS  Google Scholar 

  20. W. Du, Z. Wang, Z. Zhu, S. Hu, X. Zhu, Y. Shi, H. Pang, and X. Qian (2014). Journal of Materials Chemistry A 2, 9613–9619.

    Article  CAS  Google Scholar 

  21. A. Fernandez, M. Nair, and P. Nair (1993). Material and Manufacturing Process 8, 535–548.

    Article  CAS  Google Scholar 

  22. J. Kloprogge, W. Welters, E. Booy, V. De Beer, R. Van Santen, J. Geus, and J. Jansen (1993). Applied Catalysis A: General 97, 77–85.

    Article  CAS  Google Scholar 

  23. J. Meng, Z. Yu, Y. Li, and Y. Li (2014). Catalysis Today 225, 136–141.

    Article  CAS  Google Scholar 

  24. T. Thio, J. Bennett, and T. Thurston (1995). Physical Review B 52, 3555.

    Article  CAS  Google Scholar 

  25. J. Wang, S. Y. Chew, D. Wexler, G. Wang, S. H. Ng, S. Zhong, and H.-K. Liu (2007). Electrochemistry Communications 9, 1877–1880.

    Article  CAS  Google Scholar 

  26. C. Zhang, H. Yin, M. Han, Z. Dai, H. Pang, Y. Zheng, Y.-Q. Lan, J. Bao, and J. Zhu (2014). ACS Nano 8, 3761–3770.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Fazli, S. M. Pourmortazavi, I. Kohsari, and M. Sadeghpur (2014). Materials Science in Semiconductor Processing 27, 362–367.

    Article  CAS  Google Scholar 

  28. L. Barry, J. D. Holmes, D. J. Otway, M. P. Copley, O. Kazakova, and M. A. Morris (2010). Journal of Physics: Condensed Matter 22, 076001.

    PubMed  Google Scholar 

  29. N. Kumar, N. Raman, and A. Sundaresan (2013). Journal of Solid State Chemistry 208, 103–108.

    Article  CAS  Google Scholar 

  30. C. Tang, C. Zang, J. Su, D. Zhang, G. Li, Y. Zhang, and K. Yu (2011). Applied Surface Science 257, 3388–3391.

    Article  CAS  Google Scholar 

  31. R. Karthikeyan, D. Thangaraju, N. Prakash, and Y. Hayakawa (2015). CrystEngComm 17, 5431–5439.

    Article  CAS  Google Scholar 

  32. H. Li, L. Chai, X. Wang, X. Wu, G. Xi, Y. Liu, and Y. Qian (2007). Crystal growth & design 7, 1918–1922.

    Article  CAS  Google Scholar 

  33. V. A. V. Schmachtenberg, G. Tontini, G. D. L. Semione, and V. Drago (2018). Journal of Alloys and Compounds 768, 896–902.

    Article  CAS  Google Scholar 

  34. S. Ahmadian-Fard-Fini, D. Ghanbari, and M. Salavati-Niasari (2019). Composites Part B: Engineering 161, 564–577.

    Article  CAS  Google Scholar 

  35. M. Bazarganipour, M. Sahebi-Harandi, and M. Salavati-Niasari (2016). High Temperature Materials and Processes 35, 457–462.

    Article  CAS  Google Scholar 

  36. M. Shakouri-Arani and M. Salavati-Niasari (2015). Materials Science in Semiconductor Processing 32, 6–15.

    Article  CAS  Google Scholar 

  37. Y. Du, H. Chen, R. Chen, and N. Xu (2004). Applied Catalysis A: General 277, 259–264.

    Article  CAS  Google Scholar 

  38. Z. Hasan, Y. S. Ok, J. Rinklebe, Y. F. Tsang, D.-W. Cho, and H. Song (2017). Journal of Alloys and Compounds 703, 118–124.

    Article  CAS  Google Scholar 

  39. S. R. Subashchandrabose, M. Megharaj, K. Venkateswarlu, and R. Naidu (2012). Environmental toxicology and chemistry 31, 1980–1988.

    Article  CAS  PubMed  Google Scholar 

  40. M. J. Vaidya, S. M. Kulkarni, and R. V. Chaudhari (2003). Organic process research & development 7, 202–208.

    Article  CAS  Google Scholar 

  41. D.-Y. Du, J.-S. Qin, T.-T. Wang, S.-L. Li, Z.-M. Su, K.-Z. Shao, Y.-Q. Lan, X.-L. Wang, and E.-B. Wang (2012). Chemical Science 3, 705–710.

    Article  CAS  Google Scholar 

  42. Z. Li, X. Xu, X. Jiang, Y. Li, Z. Yu, and X. Zhang (2015). RSC Advances 5, 30062–30066.

    Article  Google Scholar 

  43. M. Ruan, P. Song, J. Liu, E. Li, and W. Xu (2017). The Journal of Physical Chemistry C 121, 25882–25887.

    Article  CAS  Google Scholar 

  44. P. Venkatesan and J. Santhanalakshmi (2011). Nanosci. Nanotechnol 1, 43–47.

    Article  Google Scholar 

  45. A. M. Huerta-Flores, L. M. Torres-Martínez, E. Moctezuma, A. P. Singh, and B. Wickman (2018). Journal of Materials Science: Materials in Electronics 29, 11613–11626.

    CAS  Google Scholar 

  46. F. Soofivand, E. Esmaeili, M. Sabet, and M. Salavati-Niasari (2018). Journal of Materials Science: Materials in Electronics 29, 858–865.

    CAS  Google Scholar 

  47. M. Ghanbari and M. Salavati-Niasari (2018). Inorganic chemistry 57, 11443–11455.

    Article  CAS  PubMed  Google Scholar 

  48. M. Karami, M. Ghanbari, H. A. Alshamsi, S. Rashki, and M. Salavati-Niasari (2021). Inorganic Chemistry Frontiers 8, 2442–2460.

    Article  CAS  Google Scholar 

  49. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, and M. Salavati-Niasari (2018). Ultrasonics sonochemistry 42, 171–182.

    Article  CAS  PubMed  Google Scholar 

  50. R. Atchudan, T. N. J. I. Edison, S. Mani, S. Perumal, R. Vinodh, S. Thirunavukkarasu, and Y. R. Lee (2020). Dalton Transactions 49, 17725–17736.

    Article  CAS  PubMed  Google Scholar 

  51. R. Atchudan, T. N. J. I. Edison, S. Perumal, N. Karthik, D. Karthikeyan, M. Shanmugam, and Y. R. Lee (2018). Journal of Photochemistry and Photobiology A: Chemistry 350, 75–85.

    Article  CAS  Google Scholar 

  52. R. Atchudan, T. N. J. I. Edison, S. Perumal, D. Karthikeyan, and Y. R. Lee (2016). Journal of Photochemistry and Photobiology B: Biology 162, 500–510.

    Article  CAS  PubMed  Google Scholar 

  53. P. Thirukumaran, R. Atchudan, A. S. Parveen, K. Kalaiarasan, Y. R. Lee, and S.-C. Kim (2019). Scientific reports 9, 1–13.

    Article  Google Scholar 

  54. M. T. Bazmi, A. Naeimi, S. Saeednia, and M. H. Ardakani (2020). Applied Organometallic Chemistry 34, e5286.

    Google Scholar 

  55. W. Qingqing, X. Gang, and H. Gaorong (2005). Journal of Solid State Chemistry 178, 2680–2685.

    Article  Google Scholar 

  56. Y. Hu, J. Chen, W. Chen, X. Lin, and X. Li (2003). Advanced Materials 15, 726–729.

    Article  CAS  Google Scholar 

  57. M. Salavati-Niasari, F. Davar, and H. Emadi (2010). Chalcogenide Lett 7, 647–655.

    CAS  Google Scholar 

  58. Z. Wu, C. Pan, T. Li, G. Yang, and Y. Xie (2007). Crystal Growth and Design 7, 2454–2459.

    Article  CAS  Google Scholar 

  59. D. Ayodhya and G. Veerabhadram (2018). Materials today energy 9, 83–113.

    Article  Google Scholar 

  60. J. Chao, D. Duan, S. Xing, Y. Zhao, X. Zhang, S. Gao, X. Li, Q. Fan, and J. Yang (2015). Solid State Sciences 43, 59–62.

    Article  CAS  Google Scholar 

  61. N. A. Marand, S. Masoudpanah, M. S. Bafghi, and S. Alamolhoda (2020). Journal of Electronic Materials 49, 1266–1272.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from Vali-e-Asr University of Rafsanjan for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Saeednia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, M., Saeednia, S., Iranmanesh, P. et al. Cauliflower-like Nickel Sulfide Nanostructures: Preparation, Optical Properties, Catalytic and Photocatalytic Activities. J Clust Sci 34, 311–322 (2023). https://doi.org/10.1007/s10876-021-02210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02210-5

Keywords

Navigation