Skip to main content
Log in

Radiation-Assisted Green Synthesis and Characterization of Selenium Nanoparticles, and Larvicidal Effects on Culex pipiens complex

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Many environmental hazards are due to chemical insecticides and enhance mosquito species' resistance. This problem is solved by using safer nanocides that reduce environmental pollution among integrated pest management (IPM) programs. Selenium nanoparticles (SeNPs) were green synthesized using Cupressus sempervirens, microwave (MW), and gamma irradiation (G) methods. Synthesized-SeNPs were characterized using UV–Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), Dynamic light scattering (DLS), X-ray diffraction (XRD), Zeta potential analysis, and Transmission electron microscopy (TEM). Characterization revealed stable spherical particles with size 11-55 nm for SeNPs-MW (20 min) and 21-75 nm for SeNPs-G (40 KGy). Gamma and microwave irradiations play significant roles in increasing SeNPs yield and decreasing their size. The accumulative mortality of Culex pipiens complex larvae for SeNPs-MW and SeNPs-G at LC50 were 28.25 mg/L and 31.28 mg/L. The accumulated selenium concentration was increased in SeNPs-G treated larvae and measured with inductively coupled plasma mass spectrometry (ICP-MS). Ultrastructural study of the integument using TEM and light microscopy examination of midgut showed clear penetration and accumulation of SeNPs in exoskeleton and several deteriorations in epithelial cells. The results highlighted the important role of gamma and microwave irradiation with plant extract in synthesis and stabilization of SeNPs and their insecticidal efficacy against mosquitoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D. Otranto, F. Dantas-Torres, E. Brianti, D. Traversa, D. Petrić, C. Genchi, and G. Capelli (2013). Parasites and Vectors. 6 (1), 1–14. https://doi.org/10.1186/1756-3305-6-16.

    Article  Google Scholar 

  2. J. P. Martinet, H. Ferté, A. B. Failloux, F. Schaffner, J. Depaquit, Viruses. (2019), 11 (11). DOI: https://doi.org/10.3390/v11111059.

  3. H. A. El-Sadawy, A. H. El Namaky, E. E. Hafez, B. A. Baiome, A. M. Ahmed, H. M. Ashry, and T. H. Ayaad (2018). Trop. Biomed. 35 (2), 392–407.

    CAS  PubMed  Google Scholar 

  4. S. V. Mayer, R. B. Tesh, and N. Vasilakis (2017). Acta Trop. 166, 155–163. https://doi.org/10.1016/j.actatropica.2016.11.020.

    Article  PubMed  Google Scholar 

  5. H. Liu, Q. Xu, L. Zhang, and N. Liu (2005). J. Med. Entomol. 42 (5), 815–820. https://doi.org/10.1093/jmedent/42.5.815.

    Article  CAS  PubMed  Google Scholar 

  6. S. Perumal, M. V. Gopal Samy, D. Subramanian, Bioprocess Biosyst. Eng. (2021), 44 (9), 1853–1863. DOI: https://doi.org/10.1007/s00449-021-02565-z.

  7. H. Amiri, S. I. Hashemy, Z. Sabouri, H. Javid, and M. Darroudi (2021). Res. Chem. Intermed. 47 (6), 2539–2556. https://doi.org/10.1007/s11164-021-04424-8.

    Article  CAS  Google Scholar 

  8. B. Uzair, A. Liaqat, H. Iqbal, B. Menaa, A. Razzaq, G. Thiripuranathar, N. F. Rana, and F. Menaa (2020). Bioengineering. 7 (4), 1–22. https://doi.org/10.3390/bioengineering7040129.

    Article  CAS  Google Scholar 

  9. G. Gahlawat and A. R. Choudhury (2019). RSC Adv. 9 (23), 12944–12967. https://doi.org/10.1039/c8ra10483b.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. M. Shu, F. He, Z. Li, X. Zhu, Y. Ma, Z. Zhou, Z. Yang, F. Gao, M. Zeng, Nanoscale Res. Lett. (2020), 15 (1). DOI: https://doi.org/10.1186/s11671-019-3244-z.

  11. M. Rai, S. Bonde, P. Golinska, J. Trzcińska-Wencel, A. Gade, K. Abd-Elsalam, S. Shende, S. Gaikwad, and A. P. Ingle (2021). J. Fungi. 7 (2), 1–24. https://doi.org/10.3390/jof7020139.

    Article  CAS  Google Scholar 

  12. M. C. Zambonino, E. M. Quizhpe, F. E. Jaramillo, A. Rahman, N. S. Vispo, C. Jeffryes, and S. A. Dahoumane (2021). Int. J. Mol. Sci. 22 (3), 1–34. https://doi.org/10.3390/ijms22030989.

    Article  CAS  Google Scholar 

  13. S. Kumar, V. Lather, and D. Pandita (2015). Nanomedicine. 10 (15), 2451–2471. https://doi.org/10.2217/nnm.15.112.

    Article  CAS  PubMed  Google Scholar 

  14. U. Muthukumaran, M. Govindarajan, and M. Rajeswary (2015). Parasitol. Res. 114 (3), 989–999. https://doi.org/10.1007/s00436-014-4265-2.

    Article  PubMed  Google Scholar 

  15. K. Anu, G. Singaravelu, K. Murugan, and G. Benelli (2017). J. Clust. Sci. 28 (1), 551–563. https://doi.org/10.1007/s10876-016-1123-7.

    Article  CAS  Google Scholar 

  16. G. Benelli (2015). Parasitol. Res. 114 (9), 3201–3212. https://doi.org/10.1007/s00436-015-4656-z.

    Article  PubMed  Google Scholar 

  17. R. Pavela, F. Maggi, R. Iannarelli, and G. Benelli (2019). Acta Trop. 193, 236–271. https://doi.org/10.1016/j.actatropica.2019.01.019.

    Article  CAS  PubMed  Google Scholar 

  18. X. Li, H. Xu, Z. S. Chen, G. Chen, J. Nanomater. (2011), 2011. DOI: https://doi.org/10.1155/2011/270974.

  19. A. K. Mittal, Y. Chisti, and U. C. Banerjee (2013). Biotechnol. Adv. 31 (2), 346–356. https://doi.org/10.1016/j.biotechadv.2013.01.003.

    Article  CAS  PubMed  Google Scholar 

  20. P. M. Shaklee (2013). Trends Biotechnol. 31 (1), 1. https://doi.org/10.1016/j.tibtech.2012.11.002.

    Article  CAS  PubMed  Google Scholar 

  21. M. Kapur, K. Soni, and K. Kohli (2017). Adv. Tech. Biol. Med. 05 (01), 1–7. https://doi.org/10.4172/2379-1764.1000198.

    Article  Google Scholar 

  22. A. E. Al-Snafi, IOSR J. Pharm. (2016), 6 (6 Version. 2), 66–76.

  23. S. S. Shankar, A. Ahmad, R. Pasricha, and M. Sastry (2003). J. Mater. Chem. 13 (7), 1822–1826. https://doi.org/10.1039/b303808b.

    Article  CAS  Google Scholar 

  24. S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid Interface Sci. (2004), 275 (2), 496–502. DOI: https://doi.org/10.1016/j.jcis.2004.03.003.

  25. A. R. Vilchis-Nestor, V. Sánchez-Mendieta, M. A. Camacho-López, R. M. Gómez-Espinosa, M. A. Camacho-López, and J. A. Arenas-Alatorre (2008). Mater. Lett. 62 (17–18), 3103–3105. https://doi.org/10.1016/j.matlet.2008.01.138.

    Article  CAS  Google Scholar 

  26. J. Y. Song and B. S. Kim (2009). Bioprocess Biosyst. Eng. 32 (1), 79–84. https://doi.org/10.1007/s00449-008-0224-6.

    Article  CAS  Google Scholar 

  27. M. P. Patil, G. Do Kim, Appl. Microbiol. Biotechnol. (2017), 101 (1), 79–92. DOI: https://doi.org/10.1007/s00253-016-8012-8.

  28. M. Krishnan, K. Ranganathan, P. Maadhu, P. Thangavelu, S. Kundan, and N. Arjunan (2020). Coatings. 10, 1–16. https://doi.org/10.3390/coatings10070626.

    Article  CAS  Google Scholar 

  29. L. Gunti, R. S. Dass, N. K. Kalagatur, Front. Microbiol. (2019), 10 (APR), 1–17. DOI: https://doi.org/10.3389/fmicb.2019.00931.

  30. J. Vyas and S. Rana (2017). Int. J. Curr. Pharm. Res. 9 (4), 147. https://doi.org/10.22159/ijcpr.2017v9i4.20981.

    Article  CAS  Google Scholar 

  31. P. Sowndarya, G. Ramkumar, and M. S. Shivakumar (2017). Artif. Cells, Nanomedicine Biotechnol. 45 (8), 1490–1495. https://doi.org/10.1080/21691401.2016.1252383.

    Article  CAS  Google Scholar 

  32. F. M. Mosallam, G. S. El-Sayyad, R. M. Fathy, and A. I. El-Batal (2018). Microb. Pathog. 122 (March), 108–116. https://doi.org/10.1016/j.micpath.2018.06.013.

    Article  CAS  PubMed  Google Scholar 

  33. J. Zhu, O. Palchik, S. Chen, and A. Gedanken (2000). J. Phys. Chem. B. 104 (31), 7344–7347. https://doi.org/10.1021/jp001488t.

    Article  CAS  Google Scholar 

  34. V. Abdelsayed, A. Aljarash, M. S. El-Shall, Z. A. Al Othman, A. H. Alghamdi, Chem. Mater. (2009), 21 (13), 2825–2834. DOI: https://doi.org/10.1021/cm9004486.

  35. A. Ávalos, A. I. Haza, E. Drosopoulou, P. Mavragani-Tsipidou, and P. Morales (2015). Food Chem. Toxicol. 85, 114–119. https://doi.org/10.1016/j.fct.2015.06.024.

    Article  CAS  PubMed  Google Scholar 

  36. K. Kalimuthu, C. Panneerselvam, C. Chou, L. C. Tseng, K. Murugan, K. H. Tsai, A. A. Alarfaj, A. Higuchi, A. Canale, J. S. Hwang, et al. (2017). Process Saf. Environ. Prot. 109, 82–96. https://doi.org/10.1016/j.psep.2017.03.027.

    Article  CAS  Google Scholar 

  37. E. Kauffman, A. Payne, M. Franke, M. Schmid, E. Harris, L. Kramer, BIO-PROTOCOL. (2017), 7 (17). DOI: https://doi.org/10.21769/bioprotoc.2542.

  38. E. S. Reynolds, J. Cell Biol. (1963), 17 (1), 208–212. DOI: https://doi.org/10.1083/jcb.17.1.208.

  39. H. P. Klug, L. E. Alexander, xdpf. 1974, 992.

  40. M. A. El-Ghazaly, N. Fadel, E. Rashed, A. El-Batal, and S. A. Kenawy (2017). Can. J. Physiol. Pharmacol. 95 (2), 101–110. https://doi.org/10.1139/cjpp-2016-0183.

    Article  CAS  PubMed  Google Scholar 

  41. P. J. Fesharaki, P. Nazari, M. Shakibaie, S. Rezaie, M. Banoee, M. Abdollahi, and A. R. Shahverdi (2010). Braz. J. Microbiol. 41 (2), 461–466. https://doi.org/10.1590/S1517-838220100002000028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. B. R. Kirupagaran and A. Saritha (2016). J. Nanosci. Technol. 2 (5), 224–226.

    Google Scholar 

  43. P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M. I. Khan, R. Kumar, and M. Sastry (2002). ChemBioChem. 3 (5), 461–463. https://doi.org/10.1002/1439-7633(20020503)3:5%3c461::AID-CBIC461%3e3.0.CO;2-X.

    Article  CAS  PubMed  Google Scholar 

  44. J. L. Marignier, J. Belloni, M. O. Delcourt, and J. P. Chevalier (1985). Nature. 317 (6035), 344–345. https://doi.org/10.1038/317344a0.

    Article  CAS  Google Scholar 

  45. A. M. Abdelghany, E. M. Abdelrazek, S. I. Badr, M. S. Abdel-Aziz, M. A. Morsi, J. Saudi Chem. Soc. (2017), 21 (5), 528–537. DOI: https://doi.org/10.1016/j.jscs.2015.10.002.

  46. M. Mostafavi, M. O. Delcourt, and G. Picq (1993). Radiat. Phys. Chem. 41 (3), 453–459. https://doi.org/10.1016/0969-806X(93)90004-E.

    Article  CAS  Google Scholar 

  47. A. I. El-Batal, N. M. Sidkey, I. A. A, R. A. Arafa, R. M. Fathy, J. Chem. Pharm. Res. (2016), 8 (4), 934–951.

  48. A. I. El-Batal, A. A. M. Hashem, and N. M. Abdelbaky (2013). Springerplus. 2 (1), 129. https://doi.org/10.1186/2193-1801-2-129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. N. P. Herring, A. B. Panda, K. AbouZeid, S. H. Almahoudi, C. R. Olson, A. Patel, M. S. El-Shall, in Met. Oxide Nanomater. Chem. Sensors, Springer New York (2013).

  50. C. Mellinas, A. Jiménez, M. Del Carmen Garrigós, Molecules. (2019), 24 (22), 4048. DOI: https://doi.org/10.3390/molecules24224048.

  51. H. Acay and M. F. Baran (2019). Appl. Ecol. Environ. Res. 17 (4), 9205–9214. https://doi.org/10.15666/aeer/1704_92059214.

    Article  Google Scholar 

  52. K. Setti, F. Kachouri, and M. Hamdi (2018). Int. J. Pept. Res. Ther. 24 (4), 499–509. https://doi.org/10.1007/s10989-017-9636-y.

    Article  CAS  Google Scholar 

  53. A. I. El-Batal, F. M. Mosallam, M. M. Ghorab, A. Hanora, M. Gobara, A. Baraka, M. A. Elsayed, K. Pal, R. M. Fathy, M. Abd Elkodous, et al., Int. J. Biol. Macromol. (2020), 156, 1584–1599. DOI: https://doi.org/10.1016/j.ijbiomac.2019.11.210.

  54. S. Kannan, K. Mohanraj, K. Prabhu, S. Barathan, and G. Sivakumar (2014). Bull. Mater. Sci. 37 (7), 1631–1635. https://doi.org/10.1007/s12034-014-0712-z.

    Article  CAS  Google Scholar 

  55. K. Kimura, Y. Hane, and Y. Watanabe (2005). Water Sci. Technol. 51 (6–7), 93–100. https://doi.org/10.2166/wst.2005.0626.

    Article  CAS  Google Scholar 

  56. Y. Park, Y. N. Hong, A. Weyers, Y. S. Kim, and R. J. Linhardt (2011). IET Nanobiotechnology. 5 (3), 69–78. https://doi.org/10.1049/iet-nbt.2010.0033.

    Article  CAS  PubMed  Google Scholar 

  57. K. S. Prasad and K. Selvaraj (2014). Biol. Trace Elem. Res. 157 (3), 275–283. https://doi.org/10.1007/s12011-014-9891-0.

    Article  CAS  PubMed  Google Scholar 

  58. J. Huang, Z. Liu, C. He, and L. M. Gan (2005). J. Phys. Chem. B. 109 (35), 16644–16649. https://doi.org/10.1021/jp052667j.

    Article  CAS  PubMed  Google Scholar 

  59. K. W. Powers, M. Palazuelos, B. M. Moudgil, and S. M. Roberts (2007). Nanotoxicology. 1 (1), 42–51. https://doi.org/10.1080/17435390701314902.

    Article  CAS  Google Scholar 

  60. G. Sharma, A. R. Sharma, R. Bhavesh, J. Park, B. Ganbold, J. S. Nam, and S. S. Lee (2014). Molecules. 19 (3), 2761–2770. https://doi.org/10.3390/molecules19032761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. M. B. Kasture, P. Patel, A. A. Prabhune, C. V. Ramana, A. A. Kulkarni, and L. V. Prasad (2008). J. Chem. Sci. 120 (6), 515–250.

    Article  CAS  Google Scholar 

  62. S. Bhattacharjee (2016). J. Control. Release. 235, 337–351. https://doi.org/10.1016/j.jconrel.2016.06.017.

    Article  CAS  PubMed  Google Scholar 

  63. J. Sarkar, P. Dey, S. Saha, and K. Acharya (2011). Micro. Nano Lett. 6 (8), 599. https://doi.org/10.1049/mnl.2011.0227.

    Article  CAS  Google Scholar 

  64. K. Kokila, N. Elavarasan, and V. Sujatha (2017). New J. Chem. 41 (15), 7481–7490. https://doi.org/10.1039/c7nj01124e.

    Article  CAS  Google Scholar 

  65. K. Sheikhlou, S. Allahyari, S. Sabouri, Y. Najian, and H. Jafarizadeh-Malmiri (2020). Open Agric. 5 (1), 227–235. https://doi.org/10.1515/opag-2020-0024.

    Article  Google Scholar 

  66. H. Kong, J. Yang, Y. Zhang, Y. Fang, K. Nishinari, and G. O. Phillips (2014). Int. J. Biol. Macromol. 65, 155–162. https://doi.org/10.1016/j.ijbiomac.2014.01.011.

    Article  CAS  PubMed  Google Scholar 

  67. S. Li, Y. Shen, A. Xie, X. Yu, X. Zhang, L. Yang, and C. Li (2007). Nanotechnology. 18 (40). https://doi.org/10.1088/0957-4484/18/40/405101.

    Article  CAS  Google Scholar 

  68. R. S. Ghaderi, F. Adibian, Z. Sabouri, J. Davoodi, M. Kazemi, S. Amel Jamehdar, Z. Meshkat, S. Soleimanpour, M. Daroudi, Mater. Technol. (2021), 1–9. DOI: https://doi.org/10.1080/10667857.2021.1935602.

  69. X. Jiang, T. Micləuş, L. Wang, R. Foldbjerg, D. S. Sutherland, H. Autrup, C. Chen, and C. Beer (2015). Nanotoxicology. 9 (2), 181–189. https://doi.org/10.3109/17435390.2014.907457.

    Article  CAS  PubMed  Google Scholar 

  70. G. Benelli (2016). Parasitol. Res. 115 (1), 23–34. https://doi.org/10.1007/s00436-015-4800-9.

    Article  PubMed  Google Scholar 

  71. J. Yasur, P. Usha Rani, Chemosphere. (2015), 124 (1), 92–102. DOI: https://doi.org/10.1016/j.chemosphere.2014.11.029.

  72. N. Armstrong, M. Ramamoorthy, D. Lyon, K. Jones, A. Duttaroy, PLoS One. (2013), 8 (1). DOI: https://doi.org/10.1371/journal.pone.0053186.

  73. K. Shahzad and F. Manzoor (2021). Drug Chem. Toxicol. 44 (1), 1–11. https://doi.org/10.1080/01480545.2018.1525393.

    Article  CAS  Google Scholar 

  74. P. M. G. Nair and J. Choi (2012). Environ. Toxicol. Pharmacol. 33 (1), 98–106. https://doi.org/10.1016/j.etap.2011.09.006.

    Article  CAS  PubMed  Google Scholar 

  75. M. M. El-Shazly and B. M. Refaie (2002). J. Am. Mosq. Control Assoc. 18 (4), 321–328.

    CAS  PubMed  Google Scholar 

  76. N. Sultana, P. K. Raul, D. Goswami, B. Das, H. K. Gogoi, and P. S. Raju (2018). Environ. Chem. Lett. 16 (3), 1017–1023. https://doi.org/10.1007/s10311-018-0712-0.

    Article  CAS  Google Scholar 

  77. M. K. Tewfick and B. A. Soliman (2018). Egypt. J. Biol. Pest Control. 28 (1), 1–5. https://doi.org/10.1186/s41938-018-0035-2.

    Article  Google Scholar 

  78. H. Ga’al, H. Fouad, J. Tian, Y. Hu, G. Abbas, J. Mo, Pestic. Biochem. Physiol. (2018), 144, 49–56. DOI: https://doi.org/10.1016/j.pestbp.2017.11.004.

  79. G. Suganya, S. Karthi, and M. S. Shivakumar (2014). Parasitol. Res. 113 (3), 875–880. https://doi.org/10.1007/s00436-013-3718-3.

    Article  PubMed  Google Scholar 

  80. R. Foldbjerg, X. Jiang, T. Micləuş, C. Chen, H. Autrup, and C. Beer (2015). Toxicol. Res. (Camb) 4 (3), 563–575. https://doi.org/10.1039/c4tx00110a.

    Article  CAS  Google Scholar 

  81. F. A. Al-Mekhlafi (2018). Saudi. J. Biol. Sci. 25 (1), 52–56. https://doi.org/10.1016/j.sjbs.2017.02.010.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to acknowledge Dr. Yousef A. El-Demerdash, Lecturer at Department of Entomology, Faculty of Science, Cairo University, for or his kind support and assistance, in the preparation of morphological images and the identification and classification of experimental mosquitoes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Awad.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest. This research did not receive any funding from any agencies in the public commercial, or not-for-profit sectors.

Ethical approval

This research does not contain any studies with human participants or animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadl, A.M., El-Kholy, E.M.S., Abulyazid, I. et al. Radiation-Assisted Green Synthesis and Characterization of Selenium Nanoparticles, and Larvicidal Effects on Culex pipiens complex. J Clust Sci 33, 2601–2615 (2022). https://doi.org/10.1007/s10876-021-02174-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02174-6

Keywords

Navigation