Skip to main content

Advertisement

Log in

Plant-Mediated Synthesis and Characterization of Silver and Copper Oxide Nanoparticles: Antibacterial and Heavy Metal Removal Activity

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The advancement in conservationist strategies for development of nanoparticles is elemental to the subject of nanotechnology. Green protocols are highly preferred over conventional methods as they are environmentally benign. Certain phytochemicals in plant extracts exhibit natural tendencies of bio-reduction of salts. They also possess the ability of stabilizing these reduced particles by capping them. In present study leaf extract of Catharanthus roseus, an evergreen subshrub has been utilized for production of AgNPs and CuO-NPs. Synthesized nanoparticles were evaluated for their cadmium, chromium removal and antibacterial potential against S. aureus. AgNPs and CuO-NPs were optimized by varying salt concentration, leaf extract concentration and time interval to obtain better yield. UV–Vis spectroscopy was used to detect biogenic AgNPs and CuO-NPs. Wavelength range used for AgNPs and CuO-NPs was 300–700 and 200–700 nm successively. The morphology of nanoparticles was determined to be spherical and within 100 nm using SEM images. FT-IR investigation confirmed the presence of amines and alcohols in AgNPs. IR spectra of CuO-NPs revealed the ubiety of aldehydes/ ketones and carboxylic acids. The average distribution for silver was 602.9 nm and for copper was1066 nm as confirmed by DLS analysis. Further zeta-potential for AgNPs and CuO-NPs was recorded -16.4 mV and -6.18 mV. Kirby Bauer test for S.aureus show maximum ZOI i.e. 16 mm in case of AgNP (50 µl) and 10 mm in case of CuO-NP (50 µl). Highest chromium and cadmium removal was observed in case of biogenic silver nanoparticles i.e. 47.84% and 5.68% respectively. This is the first work that presents a comparative study of biogenic AgNPs and CuO-NPs from the leaf extract of Catharanthus roseus. Our findings can also help in improving the current scenario of metalloid pollution in soil and water environments. Hence, proper scaling up can make biogenic AgNPs and CuO-NPs a noteworthy tool in industries as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, and A. Misra (2009). Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and surfaces A: Physicochemical and engineering aspects 339 (1–3), 134–139.

    Article  CAS  Google Scholar 

  2. N. N. Nassar, L. A. Arar, N. N. Marei, M. M. A. Ghanim, M. S. Dwekat, and S. H. Sawalha (2014). Treatment of olive mill based wastewater by means of magnetic nanoparticles: Decolourization, dephenolization and COD removal. Environmental Nanotechnology, Monitoring & Management 1, 14–23.

    Article  Google Scholar 

  3. M. Bundschuh, J. Filser, S. Lüderwald, M. S. McKee, G. Metreveli, G. E. Schaumann, and S. Wagner (2018). Nanoparticles in the environment: where do we come from, where do we go to? Environmental Sciences Europe 30 (1), 1–17.

    Article  CAS  Google Scholar 

  4. F. E. Löffler and E. A. Edwards (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology 17 (3), 274–284.

    Article  PubMed  CAS  Google Scholar 

  5. S. Sunkar and C. V. Nachiyar (2012). Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: a novel source in the benign synthesis. Global J. Med. Res 12 (2), 43–50.

    Google Scholar 

  6. P. Khandel and S. K. Shahi (2018). Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. Journal of Nanostructure in Chemistry 8 (4), 369–391.

    Article  CAS  Google Scholar 

  7. A. R. G. Ghomi, M. Mohammadi-Khanaposhti, H. Vahidi, F. Kobarfard, M. A. S. Reza, and H. Barabadi (2019). Fungus-mediated extracellular biosynthesis and characterization of zirconium nanoparticles using standard penicillium species and their preliminary bactericidal potential: a novel biological approach to nanoparticle synthesis. Iranian journal of pharmaceutical research: IJPR 18 (4), 2101.

    CAS  Google Scholar 

  8. B. K. Nayak, A. Nanda, and V. Prabhakar (2018). Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens. Biocatalysis and agricultural biotechnology 16, 412–418.

    Article  Google Scholar 

  9. A. Boroumand Moghaddam, F. Namvar, M. Moniri, S. Azizi, and R. Mohamad (2015). Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20 (9), 16540–16565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Baker, S., Harini, B. P., Rakshith, D., & Satish, S. (2013). Marine microbes: invisible nanofactories. journal of pharmacy research6(3), 383–388.

  11. R. R. R. Kannan, R. Arumugam, D. Ramya, K. Manivannan, and P. Anantharaman (2013). Green synthesis of silver nanoparticles using marine macroalga Chaetomorpha linum. Applied Nanoscience 3 (3), 229–233.

    Article  CAS  Google Scholar 

  12. M. I. Din, A. G. Nabi, A. Rani, A. Aihetasham, and M. Mukhtar (2018). Single step green synthesis of stable nickel and nickel oxide nanoparticles from Calotropis gigantea: Catalytic and antimicrobial potentials. Environmental Nanotechnology, Monitoring & Management 9, 29–36.

    Article  Google Scholar 

  13. M. S. Akhtar, J. Panwar, and Y. S. Yun (2013). Biogenic synthesis of metallic nanoparticles by plant extracts. ACS Sustainable Chemistry & Engineering 1 (6), 591–602.

    Article  CAS  Google Scholar 

  14. V. Gopinath, D. MubarakAli, S. Priyadarshini, N. M. Priyadharsshini, N. Thajuddin, and P. Velusamy (2012). Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach. Colloids and Surfaces B: Biointerfaces 96, 69–74.

    Article  CAS  PubMed  Google Scholar 

  15. D. MubarakAli, N. Thajuddin, K. Jeganathan, and M. Gunasekaran (2011). Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids and Surfaces B: Biointerfaces 85 (2), 360–365.

    Article  CAS  PubMed  Google Scholar 

  16. M. Jeyaraj, M. Rajesh, R. Arun, D. MubarakAli, G. Sathishkumar, G. Sivanandhan, and A. Ganapathi (2013). An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids and Surfaces B: Biointerfaces 102, 708–717.

    Article  CAS  PubMed  Google Scholar 

  17. S. Priyadarshini, A. Mainal, F. Sonsudin, R. Yahya, A. A. Alyousef, and A. Mohammed (2020). Biosynthesis of TiO 2 nanoparticles and their superior antibacterial effect against human nosocomial bacterial pathogens. Research on Chemical Intermediates 46 (2), 1077–1089.

    Article  CAS  Google Scholar 

  18. J. Premkumar, T. Sudhakar, A. Dhakal, J. B. Shrestha, S. Krishnakumar, and P. Balashanmugam (2018). Synthesis of silver nanoparticles (AgNPs) from cinnamon against bacterial pathogens. Biocatalysis and agricultural biotechnology 15, 311–316.

    Article  Google Scholar 

  19. M. K. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of applied microbiology 112 (5), 841–852.

    Article  CAS  PubMed  Google Scholar 

  20. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez, and M. J. Yacaman (2005). The bactericidal effect of silver nanoparticles. Nanotechnology 16 (10), 2346.

    Article  CAS  PubMed  Google Scholar 

  21. S. Raina, A. Roy, and N. Bharadvaja (2020). Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environmental Nanotechnology, Monitoring & Management 13, 100278.

    Article  Google Scholar 

  22. R. Hong, G. Han, J. M. Fernández, B. J. Kim, N. S. Forbes, and V. M. Rotello (2006). Glutathione-mediated delivery and release using monolayer protected nanoparticle carriers. Journal of the American Chemical Society 128 (4), 1078–1079.

    Article  CAS  PubMed  Google Scholar 

  23. R. Pandey and G. K. Khuller (2007). Nanoparticle-based oral drug delivery system for an injectable antibiotic–streptomycin. Chemotherapy 53 (6), 437–441.

    Article  CAS  PubMed  Google Scholar 

  24. J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, and M. J. Yacaman (2005). Interaction of silver nanoparticles with HIV-1. Journal of nanobiotechnology 3 (1), 1–10.

    Article  Google Scholar 

  25. Barabadi, H., Vahidi, H., Mahjoub, M. A., Kosar, Z., Kamali, K. D., Ponmurugan, K., ... & Saravanan, M. (2019). Emerging antineoplastic gold nanomaterials for cervical Cancer therapeutics: a systematic review. Journal of Cluster Science, 1–12.

  26. A. Khatua, A. Prasad, E. Priyadarshini, A. K. Patel, A. Naik, M. Saravanan, and R. Meena (2020). Emerging antineoplastic plant-based gold nanoparticle synthesis: a mechanistic exploration of their anticancer activity toward cervical cancer cells. Journal of Cluster Science 31 (6), 1329–1340.

    Article  CAS  Google Scholar 

  27. H. Barabadi, M. Najafi, H. Samadian, A. Azarnezhad, H. Vahidi, M. A. Mahjoub, and A. Ahmadi (2019). A systematic review of the genotoxicity and antigenotoxicity of biologically synthesized metallic nanomaterials: are green nanoparticles safe enough for clinical marketing? Medicina 55 (8), 439.

    Article  PubMed Central  Google Scholar 

  28. Mortezaee, K., Najafi, M., Samadian, H., Barabadi, H., Azarnezhad, A., & Ahmadi, A. (2019). Redox interactions and genotoxicity of metal-based nanoparticles: A comprehensive review. Chemico-biological interactions312, 108814.

  29. M. C. DeRosa, C. Monreal, M. Schnitzer, R. Walsh, and Y. Sultan (2010). Nanotechnology in fertilizers. Nature nanotechnology 5 (2), 91–91.

    Article  CAS  PubMed  Google Scholar 

  30. F. Torney, B. G. Trewyn, V. S. Y. Lin, and K. Wang (2007). Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature nanotechnology 2 (5), 295–300.

    Article  CAS  PubMed  Google Scholar 

  31. S. Liu, D. Leech, and H. Ju (2003). Application of colloidal gold in protein immobilization, electron transfer, and biosensing. Analytical letters 36 (1), 1–19.

    Article  CAS  Google Scholar 

  32. L. Gao, D. Zhang, and M. Chen (2008). Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. Journal of Nanoparticle Research 10 (5), 845–862.

    Article  CAS  Google Scholar 

  33. P. R. Aranda, I. Llorens, E. Perino, I. De Vito, and J. Raba (2016). Removal of arsenic (V) ions from aqueous media by adsorption on multiwall carbon nanotubes thin film using XRF technique. Environmental Nanotechnology, Monitoring & Management 5, 21–26.

    Article  Google Scholar 

  34. A. Ali, A. Mannan, I. Hussain, I. Hussain, and M. Zia (2018). Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: isotherm, kinetics and statistical supposition of process. Environmental Nanotechnology, Monitoring & Management 9, 1–11.

    Article  Google Scholar 

  35. Kumar, L., & Bharadvaja, N. (2019). Enzymatic bioremediation: a smart tool to fight environmental pollutants. In Smart Bioremediation Technologies (pp. 99–118). Academic Press

  36. S. J. Hawkes (1997). What is a" heavy metal"? Journal of Chemical Education 74 (11), 1374.

    Article  CAS  Google Scholar 

  37. Kumar, L., & Bharadvaja, N. (2020). Microbial Remediation of Heavy Metals. In Microbial Bioremediation & Biodegradation (pp. 49–72). Springer, Singapore.

  38. M. Ajaib, Z. Khan, N. A. S. R. U. L. L. A. H. Khan, and M. Wahab (2010). Ethnobotanical studies on useful shrubs of district Kotli, Azad Jammu & Kashmir. Pakistan. Pak. J. Bot 42 (3), 1407–1415.

    Google Scholar 

  39. R. R. Chattopadhyay, S. K. Sarkar, S. Ganguly, R. N. Banerjee, and T. K. Basu (1991). Hypoglycemic and antihyperglycemic effect of leaves of Vinca rosea linn. Indian Journal of Physiology and Pharmacology 35 (3), 145–151.

    CAS  PubMed  Google Scholar 

  40. P. J. Patil and J. S. Ghosh (2010). Antimicrobial activity of Catharanthus roseus–a detailed study. British Journal of Pharmacology and Toxicology 1 (1), 40–44.

    Google Scholar 

  41. Sekar, P. (1996). Vedic clues to memory enhancer. The Hindu, March21.

  42. A. Roy and N. Bharadvaja (2017). Silver nanoparticles synthesis from a pharmaceutically important medicinal plant Plumbago zeylanica. MOJ Bioequiv Availab 3 (5), 00046.

    Google Scholar 

  43. A. Roy (2017). Synthesis of silver nanoparticles from medicinal plants and its biological application: a review. Res Rev Biosci 12 (4), 138.

    Google Scholar 

  44. Verma, A., Roy, A., & Bharadvaja, N. (2021). Remediation of heavy metals using nanophytoremediation. In Advanced oxidation processes for effluent treatment plants (pp. 273–296). Elsevier.

  45. H. Barabadi, K. D. Kamali, F. J. Shoushtari, B. Tajani, M. A. Mahjoub, A. Alizadeh, and M. Saravanan (2019). Emerging theranostic silver and gold nanomaterials to combat prostate cancer: a systematic review. Journal of Cluster Science 30 (6), 1375–1382.

    Article  CAS  Google Scholar 

  46. H. Vahidi, H. Barabadi, and M. Saravanan (2020). Emerging selenium nanoparticles to combat cancer: a systematic review. Journal of Cluster Science 31 (2), 301–309.

    Article  CAS  Google Scholar 

  47. H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, A. R. G. Ghomi, and M. Saravanan (2020). Emerging theranostic silver nanomaterials to combat colorectal cancer: a systematic review. Journal of Cluster Science 31 (2), 311–321.

    Article  CAS  Google Scholar 

  48. H. Barabadi, H. Vahidi, K. D. Kamali, M. Rashedi, O. Hosseini, and M. Saravanan (2020). Emerging theranostic gold nanomaterials to combat colorectal cancer: a systematic review. Journal of Cluster Science 31 (4), 651–658.

    Article  CAS  Google Scholar 

  49. H. Barabadi, T. J. Webster, H. Vahidi, H. Sabori, K. D. Kamali, F. J. Shoushtari, and M. Saravana (2020). Green Nanotechnology-based Gold Nanomaterials for Hepatic Cancer Therapeutics: A Systematic Review. Iranian Journal of Pharmaceutical Research: IJPR 19 (3), 3.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Jadhav, S. Deore, D. Dhamecha, R. Hr, S. Jagwani, S. Jalalpure, and R. Bohara (2018). Phytosynthesis of silver nanoparticles: characterization, biocompatibility studies, and anticancer activity. ACS Biomaterials Science & Engineering 4 (3), 892–899.

    Article  CAS  Google Scholar 

  51. M. S. Hasnain, M. N. Javed, M. S. Alam, P. Rishishwar, S. Rishishwar, S. Ali, and S. Beg (2019). Purple heart plant leaves extract-mediated silver nanoparticle synthesis: Optimization by Box-Behnken design. Materials Science and Engineering: C 99, 1105–1114.

    Article  CAS  Google Scholar 

  52. M. Souri, V. Hoseinpour, N. Ghaemi, and A. Shakeri (2019). Procedure optimization for green synthesis of manganese dioxide nanoparticles by Yucca gloriosa leaf extract. International Nano Letters 9 (1), 73–81.

    Article  CAS  Google Scholar 

  53. S. V. Kumar, A. P. Bafana, P. Pawar, M. Faltane, A. Rahman, S. A. Dahoumane, and C. S. Jeffryes (2019). Optimized production of antibacterial copper nanoparticles in a microwave-assisted synthesis reaction using response surface methodology. Colloids and Surfaces A: Physicochemical and Engineering Aspects 573, 170–178.

    Article  CAS  Google Scholar 

  54. J. P. Ruparelia, A. K. Chatterjee, S. P. Duttagupta, and S. Mukherji (2008). Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta biomaterialia 4 (3), 707–716.

    Article  CAS  PubMed  Google Scholar 

  55. I. Ghiuă, D. Cristea, C. Croitoru, J. Kost, R. Wenkert, I. Vyrides, and D. Munteanu (2018). Characterization and antimicrobial activity of silver nanoparticles, biosynthesized using Bacillus species. Applied Surface Science 438, 66–73.

    Article  CAS  Google Scholar 

  56. S. Hemmati, A. Rashtiani, M. M. Zangeneh, P. Mohammadi, A. Zangeneh, and H. Veisi (2019). Green synthesis and characterization of silver nanoparticles using Fritillaria flower extract and their antibacterial activity against some human pathogens. Polyhedron 158, 8–14.

    Article  CAS  Google Scholar 

  57. Hasheminya, S. M., & Dehghannya, J. (2019). Green synthesis and characterization of copper nanoparticles using Eryngium caucasicum Trautv aqueous extracts and its antioxidant and antimicrobial properties. Particulate Science and Technology, 1–8.

  58. M. Thiruvengadam, I. M. Chung, T. Gomathi, M. A. Ansari, V. G. Khanna, V. Babu, and G. Rajakumar (2019). Synthesis, characterization and pharmacological potential of green synthesized copper nanoparticles. Bioprocess and biosystems engineering 42 (11), 1769–1777.

    Article  CAS  PubMed  Google Scholar 

  59. Saravanan, M., Barabadi, H., Ramachandran, B., Venkatraman, G., & Ponmurugan, K. (2019). Emerging plant-based anti-cancer green nanomaterials in present scenario. In Comprehensive Analytical Chemistry (Vol. 87, pp. 291–318). Elsevier.

  60. M. Nilavukkarasi, S. Vijayakumar, and S. P. Kumar (2020). Biological synthesis and characterization of silver nanoparticles with Capparis zeylanica L. leaf extract for potent antimicrobial and anti proliferation efficiency. Materials Science for Energy Technologies 3, 371–376.

    Article  CAS  Google Scholar 

  61. S. Vasantharaj, S. Sathiyavimal, M. Saravanan, P. Senthilkumar, K. Gnanasekaran, M. Shanmugavel, and A. Pugazhendhi (2019). Synthesis of ecofriendly copper nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. Journal of Photochemistry and Photobiology B: Biology 191, 143–149.

    Article  CAS  Google Scholar 

  62. D. A. Osibe and H. Aoyagi (2019). A novel strategy for the synthesis of gold nanoparticles with Catharanthus roseus cell suspension culture. Materials Letters 238, 317–320.

    Article  CAS  Google Scholar 

  63. J. Vijayakumari, T. L. S. Raj, A. A. Selvi, R. Glenna, and P. Raja (2019). A comparative study of plant mediated synthesis of silver, copper and zinc nanoparticles from tiliacora acuminata (lam.) Hook. F. and their antibacterial activity studies. Synthesis 18, 19–34.

    Google Scholar 

  64. O. Długosz, J. Chwastowski, and M. Banach (2020). Hawthorn berries extract for the green synthesis of copper and silver nanoparticles. Chemical Papers 74 (1), 239–252.

    Article  CAS  Google Scholar 

  65. Mali, S. C., Dhaka, A., Githala, C. K., & Trivedi, R. (2020). Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnology Reports, e00518

  66. A. Kalińska, S. Jaworski, M. Wierzbicki, and M. Gołębiewski (2019). Silver and copper nanoparticles —An alternative in future mastitis treatment and prevention? International journal of molecular sciences 20 (7), 1672.

    Article  PubMed Central  CAS  Google Scholar 

  67. Jebril, S., Jenana, R. K. B., & Dridi, C. (2020). Green synthesis of silver nanoparticles using Melia azedarach leaf extract and their antifungal activities: In vitro and in vivo. Materials Chemistry and Physics248, 122898.

  68. Thirumagal, N., & Jeyakumari, A. P. (2020). Structural, optical and antibacterial properties of green synthesized silver nanoparticles (AgNPs) using justicia adhatoda L. leaf extract. Journal of Cluster Science31(2), 487–497.

  69. Jahan, I., Erci, F., Cakir-Koc, R., & Isildak, I. (2020). Microwave-irradiated green synthesis of metallic silver and copper nanoparticles using fresh ginger (Zingiber officinale) rhizome extract and evaluation of their antibacterial potentials and cytotoxicity. Inorganic and Nano-Metal Chemistry, 1–11.

  70. Dlamini, N. G., Basson, A. K., & Pullabhotla, V. S. R. (2020). Biosynthesis of bioflocculant passivated copper nanoparticles, characterization and application. Physics and Chemistry of the Earth, Parts A/B/C, 102898.

  71. A. V. Samrot, J. L. A. Angalene, S. M. Roshini, P. Raji, S. M. Stefi, R. Preethi, and A. Madankumar (2019). Bioactivity and heavy metal removal using plant gum mediated green synthesized silver nanoparticles. Journal of Cluster Science 30 (6), 1599–1610.

    Article  CAS  Google Scholar 

  72. X. Jin, Y. Liu, J. Tan, G. Owens, and Z. Chen (2018). Removal of Cr (VI) from aqueous solutions via reduction and absorption by green synthesized iron nanoparticles. Journal of Cleaner Production 176, 929–936.

    Article  CAS  Google Scholar 

  73. Marimuthu, S., Antonisamy, A. J., Malayandi, S., Rajendran, K., Tsai, P. C., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Silver nanoparticles in dye effluent treatment: A review on synthesis, treatment methods, mechanisms, photocatalytic degradation, toxic effects and mitigation of toxicity. Journal of Photochemistry and Photobiology B: Biology205, 111823.

  74. Kumari, V., & Tripathi, A. K. (2020). Remediation of heavy metals in pharmaceutical effluent with the help of Bacillus cereus-based green-synthesized silver nanoparticles supported on alumina. Appl. Nanosci.

  75. M. A. Ahmed, S. T. Bishay, F. M. Ahmed, and S. I. El-Dek (2017). Effective Pb 2+ removal from water using nanozerovalent iron stored 10 months. Applied Nanoscience 7 (7), 407–416.

    Article  CAS  Google Scholar 

  76. P. Choudhury, P. Mondal, S. Majumdar, S. Saha, and G. C. Sahoo (2018). Preparation of ceramic ultrafiltration membrane using green synthesized CuO nanoparticles for chromium (VI) removal and optimization by response surface methodology. Journal of Cleaner Production 203, 511–520.

    Article  CAS  Google Scholar 

  77. K. Y. Kumar, H. B. Muralidhara, Y. A. Nayaka, J. Balasubramanyam, and H. Hanumanthappa (2013). Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder technology 246, 125–136.

    Article  CAS  Google Scholar 

  78. Zia, R., Riaz, M., Farooq, N., Qamar, A., & Anjum, S. (2018). Antibacterial activity of Ag and Cu nanoparticles synthesized by chemical reduction method: a comparative analysis. Materials Research Express5(7), 075012

  79. C. P. Devatha, K. Jagadeesh, and M. Patil (2018). Effect of green synthesized iron nanoparticles by Azardirachta Indica in different proportions on antibacterial activity. Environmental Nanotechnology, Monitoring & Management 9, 85–94.

    Article  Google Scholar 

  80. Rajeshkumar, S., Menon, S., Kumar, S. V., Tambuwala, M. M., Bakshi, H. A., Mehta, M., ... & Dua, K. (2019). Antibacterial and antioxidant potential of biosynthesized copper nanoparticles mediated through Cissus arnotiana plant extract. Journal of Photochemistry and Photobiology B: Biology197, 111531.

  81. Abbas, S., Nasreen, S., Haroon, A., & Ashraf, M. A. (2020). Synthesis of Silver and copper nanoparticles from plants and Application as Adsorbents for Naphthalene Decontamination. Saudi Journal of Biological Sciences.

  82. D. N. Phan, N. Dorjjugder, M. Q. Khan, Y. Saito, G. Taguchi, H. Lee, and I. S. Kim (2019). Synthesis and attachment of silver and copper nanoparticles on cellulose nanofibers and comparative antibacterial study. Cellulose 26 (11), 6629–6640.

    Article  CAS  Google Scholar 

  83. Ahmad, S., Tauseef, I., Haleem, K. S., Khan, K., Shahzad, M., Ali, M., & Sultan, F. (2019). Synthesis of silver nanoparticles using leaves of Catharanthus roseus and their antimicrobial activity. Applied Nanoscience, 1–6.

  84. Bindhu, M. R., Umadevi, M., Esmail, G. A., Al-Dhabi, N. A., & Arasu, M. V. (2020). Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. Journal of Photochemistry and Photobiology B: Biology205, 111836.

  85. A. U. Rahman, A. U. Khan, Q. Yuan, Y. Wei, A. Ahmad, S. Ullah, and W. Ahmad (2019). Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4. Journal of Photochemistry and Photobiology B: Biology 193, 31–38.

    Article  CAS  Google Scholar 

  86. Maghimaa, M., & Alharbi, S. A. (2020). Green synthesis of silver nanoparticles from Curcuma longa L. and coating on the cotton fabrics for antimicrobial applications and wound healing activity. Journal of Photochemistry and Photobiology B: Biology204, 111806.

Download references

Acknowledgements

The author is highly obliged to Dr. Navneeta Bharadvaja for her valuable guidance and Plant Biotechnology Laboratory (DTU) for providing all the required facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneeta Bharadvaja.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Bharadvaja, N. Plant-Mediated Synthesis and Characterization of Silver and Copper Oxide Nanoparticles: Antibacterial and Heavy Metal Removal Activity. J Clust Sci 33, 1697–1712 (2022). https://doi.org/10.1007/s10876-021-02091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02091-8

Keywords

Navigation