Skip to main content
Log in

Axially Chiral Cage-Like B38+ and B382+: New Aromatic Members of the Borospherene Family

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The successive discoveries of the cage-like D2d B40−/0 and C3/C2 B39 mark the onset of borospherene chemistry. Based on extensive global minimum searches and first-principles theory calculations, we predict herein the possible existence of the axially chiral cage-like C2 B38+ (1/1′) and C2 B382+ (3/3′) which are novel aromatic members of the borospherene family featuring a B21 boron triple-chain on the waist and four B6 hexagonal holes on the cage surface. Detailed bonding analyses show that the B38+ (1) and B382+ (3) possess 12 and 11 delocalized π bonds over a σ-skeleton, respectively, following the universal bonding pattern of σ + π double delocalization of the borospherene family. Extensive molecular dynamics simulations indicate that both B38+ (1) and B382+ (3) are dynamically stable at 700 K. The IR, Raman, and UV–vis spectra of these cluster cations are computationally simulated to facilitate their future spectral characterizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann (1999). Adv. Inorg. Chem. 131, 1376.

    Google Scholar 

  2. M. Fujimori, T. Nakata, T. Nakayama, E. Nishibori, K. Kimura, M. Takata, and M. Sakata (1999). Phys. Rev. Lett. 82, 4452–4455.

    CAS  Google Scholar 

  3. A. R. Oganov, J. Chen, C. Gatti, Y. Ma, Y. Ma, C. W. Glass, Z. Liu, T. Yu, O. O. Kurakevych, and V. L. Solozhenko (2009). Nature. 457, 863.

    CAS  PubMed  Google Scholar 

  4. A. N. Alexandrova, A. I. Boldyrev, H. J. Zhai, and L. S. Wang (2006). Coord. Chem. Rev. 250, 2811.

    CAS  Google Scholar 

  5. A. P. Sergeeva, I. A. Popov, Z. A. Piazza, W. L. Li, C. Romanescu, L. S. Wang, and A. I. Boldyrev (2014). Acc. Chem. Res. 47, 1349–1358.

    CAS  PubMed  Google Scholar 

  6. L. S. Wang (2016). Int. Rev. Phys. Chem. 35, 69–142.

    Google Scholar 

  7. X. M. Luo, T. Jian, L. J. Cheng, W. L. Li, Q. Chen, R. Li, H. J. Zhai, S. D. Li, A. I. Boldyrev, J. Li, and L. S. Wang (2017). Chem. Phys. Lett. 683, 336–341.

    CAS  Google Scholar 

  8. Y. J. Wang, Y. F. Zhao, W. L. Li, T. Jian, Q. Chen, X. R. You, T. Ou, X. Y. Zhao, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2016). J. Chem. Phys. 144, 064307.

    PubMed  Google Scholar 

  9. H. R. Li, T. Jian, W. L. Li, Ch. Q. Miao, Y. J. Wang, Q. Chen, X. M. Luo, K. Wang, H. J. Zhai, S. D. Li, and L. S. Wang (2016). Phys. Chem. Chem. Phys. 18, 29147–29155.

    CAS  PubMed  Google Scholar 

  10. W. L. Li, Y. F. Zhao, H. S. Hu, J. Li, and L. S. Wang (2014). Angew. Chem. Int. Ed. 53, 5540–5545.

    CAS  Google Scholar 

  11. Q. Chen, T. T. Chen, H. R. Li, X. Y. Zhao, W. J. Chen, H. J. Zhai, S. D. Li, and L. S. Wang (2019). Nanoscale. 11, 9698–9704.

    CAS  PubMed  Google Scholar 

  12. Q. Chen, W. L. Li, X. Y. Zhao, H. R. Li, L. Y. Feng, H. J. Zhai, S. D. Li, and L. S. Wang (2017). Eur. J. Inorg. Chem. 38, 4546–4551.

    Google Scholar 

  13. W. L. Li, Q. Chen, W. J. Tian, H. Bai, Y. F. Zhao, H. S. Hu, J. Li, H. J. Zhai, S. D. Li, and L. S. Wang (2014). J. Am. Chem. Soc. 136, 12257–12260.

    CAS  PubMed  Google Scholar 

  14. Z. A. Piazza, H. S. Hu, W. L. Li, Y. F. Zhao, J. Li, and L. S. Wang (2014). Nat. Commun. 5, 3113.

    PubMed  Google Scholar 

  15. Q. Chen, W. J. Tian, L. Y. Feng, H. G. Lu, Y. W. Mu, H. J. Zhai, S. D. Li, and L. S. Wang (2017). Nanoscale. 9, 4550–4557.

    CAS  PubMed  Google Scholar 

  16. H. Bai, T. T. Chen, Q. Chen, X. Y. Zhao, Y. Y. Zhang, W. J. Chen, W. L. Li, L. F. Cheung, B. Bai, J. Cavanagh, W. Huang, S. D. Li, J. Li, and L. S. Wang (2019). Nanoscale. 11, 23286–23295.

    CAS  PubMed  Google Scholar 

  17. Z. Zhang, A. J. Mannix, Z. Hu, B. Kiraly, N. P. Guisinger, M. C. Hersam, and B. I. Yakobson (2016). Nano Lett. 16, 6622.

    CAS  PubMed  Google Scholar 

  18. Z. Zhang, Y. Yang, G. Y. Gao, and B. I. Yakobson (2015). Angew. Chem. Int. Ed. 54, 13022–13026.

    CAS  Google Scholar 

  19. A. J. Mannix, X. F. Zhou, B. Kiraly, J. D. Wood, D. Alducin, B. D. Myers, X. Liu, B. L. Fisher, U. Santiago, J. R. Guest, M. J. Yacaman, A. Ponce, A. R. Oganov, M. C. Hersam, and N. P. Guisinger (2015). Science. 350, 1513.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu (2016). Nat. Chem. 8, 563.

    CAS  Google Scholar 

  21. R. Wu, I. K. Drozdov, S. Eltinge, P. Zahl, S. Ismail-Beigi, I. Božović, and A. Gozar (2019). Nature Nanotechol. 14, 44–49.

    CAS  Google Scholar 

  22. B. Kiraly, X. L. Liu, L. Q. Wang, Z. Zhang, A. J. Mannix, B. L. Fisher, B. I. Yakobson, M. C. Hersam, and N. P. Guisinger (2019). ACS Nano. 13, 3816–3822.

    CAS  PubMed  Google Scholar 

  23. H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang (2014). Nat. Chem. 6, 727–731.

    CAS  PubMed  Google Scholar 

  24. W. L. Li, C. Romanescu, T. Jian, and L. S. Wang (2012). J. Am. Chem. Soc. 134, 13228–13231.

    CAS  PubMed  Google Scholar 

  25. D. Z. Li, Q. Chen, Y. B. Wu, H. G. Lu, and S. D. Li (2012). Phys. Chem. Chem. Phys. 14, 14769–14774.

    CAS  PubMed  Google Scholar 

  26. Q. Chen, W. L. Li, Y. F. Zhao, S. Y. Zhang, H. S. Hu, H. Bai, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, S. D. Li, J. Li, and L. S. Wang (2015). ACS Nano. 9, 754–760.

    PubMed  Google Scholar 

  27. Q. Chen, S. Y. Zhang, H. Bai, W. J. Tian, T. Gao, H. R. Li, C. Q. Miao, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li (2015). Angew. Chem. Int. Ed. 54, 8160–8164.

    CAS  Google Scholar 

  28. Q. Chen, H. R. Li, C. Q. Miao, Y. J. Wang, H. G. Lu, Y. W. Mu, G. M. Ren, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys. 18, 11610–11615.

    CAS  PubMed  Google Scholar 

  29. Q. Chen, H. R. Li, W. J. Tian, H. G. Lu, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys. 18, 14186–14190.

    CAS  PubMed  Google Scholar 

  30. W. J. Tian, Q. Chen, H. R. Li, M. Yan, Y. W. Mu, H. G. Lu, H. J. Zhai, and S. D. Li (2016). Phys. Chem. Chem. Phys. 18, 9922–9926.

    CAS  PubMed  Google Scholar 

  31. L. Pei, H. R. Li, M. Yan, Q. Chen, Y. W. Mu, H. G. Lu, Y.-B. Wu, and S. D. Li (2018). Phys. Chem. Chem. Phys. 20, 15330–15334.

    CAS  PubMed  Google Scholar 

  32. L. Pei, M. Yan, X.-Y. Zhao, Y.-W, Mu, H.-G. Lu, Y.-B. Wu, and S.-D. Li (2020). RSC Adv. 10, 10129–10133.

  33. H. Liu, Q. Chen, H. R. Li, X. Y. Zhao, X. X. Tian, Y. W. Mu, H. G. Lu, and S. D. Li (2018). Phys. Chem. Chem. Phys. 20, 15344–15349.

    CAS  PubMed  Google Scholar 

  34. E. Oger, N. R. M. Crawford, R. Kelting, P. Weis, M. M. Kappes, and R. Ahlrichs (2007). Angew. Chem. Int. Ed. 46, 8503–8506.

    CAS  Google Scholar 

  35. J. Lv, Y. Wang, L. Zhu, and Y. Ma (2014). Nanoscale 6, 11692–11696.

    CAS  PubMed  Google Scholar 

  36. Y. F. Zhao, X. Chen, and J. Li (2017). Nano Res. 10, 3407.

    CAS  Google Scholar 

  37. X. Chen, Y.-F. Zhao, L.-S. Wang, and J. Li (2017). Comput. Theor. Chem. 1107, 57–65.

    CAS  Google Scholar 

  38. X. Chen, Y. F. Zhao, Y. Y. Zhang, and J. Li (2019). J. Comput. Chem. 40, 1105.

    CAS  PubMed  Google Scholar 

  39. X. Y. Zhao, Q. Chen, H. R. Li, Y. W. Mu, H. G. Lu, and S. D. Li (2017). Phys. Chem. Chem. Phys. 19, 10998–11003.

    CAS  PubMed  Google Scholar 

  40. C. Adamo and V. Barone (1999). J. Chem. Phys. 110, 6158–6170.

    CAS  Google Scholar 

  41. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople (1980). J. Chem. Phys. 72, 650–654.

    CAS  Google Scholar 

  42. M. J. Frisch, et al., Gaussian 09, Revision A.2 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  43. J. Cizek (1969). Adv. Chem. Phys. 14, 35.

    CAS  Google Scholar 

  44. G. D. Purvis and R. J. Bartlett (1982). J. Chem. Phys. 76, 1910–1918.

    CAS  Google Scholar 

  45. K. Raghavachari, G. W. Trucks, J. A. Pople, and M. HeadGordon (1989). Chem. Phys. Lett. 157, 479–483.

    CAS  Google Scholar 

  46. H. J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani, T. Korona, R. Lindh, A. Mitrushenkov, et al (2012). MOLPRO.

  47. D. Y. Zubarev and A. I. Boldyrev (2008). Phys. Chem. Chem. Phys. 10, 5207–5217.

    CAS  PubMed  Google Scholar 

  48. P. V. R. Schleyer and C. Maerker (1996). J. Am. Chem. Soc. 118, 6317–6318.

    CAS  PubMed  Google Scholar 

  49. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, and J. Hutter (2005). Comput. Phys. Commun. 167, 103–128.

    CAS  Google Scholar 

  50. T. T. Gao, Q. Chen, Y. W. Mu, H. G. Lu, and S. D. Li (2016). AIP Adv. 6, 065110.

    Google Scholar 

  51. D. Ciuparu, R. F. Klie, Y. M. Zhu, and L. Pfefferle (2004). J. Phys. Chem. B. 108, 3967–3969.

    CAS  Google Scholar 

  52. R. Bauernschmitt and R. Ahlrichs (1996). Chem. Phys. Lett. 256, 454–464.

    CAS  Google Scholar 

Download references

Acknowledgements

The project was financially supported by the National Natural Science Foundation of China (21720102006 and 21973057 to S.-D. Li).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue-Wen Mu or Si-Dian Li.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 15705 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Mu, YW. & Li, SD. Axially Chiral Cage-Like B38+ and B382+: New Aromatic Members of the Borospherene Family. J Clust Sci 33, 81–87 (2022). https://doi.org/10.1007/s10876-020-01943-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01943-z

Keywords

Navigation