Skip to main content
Log in

Biosynthesis of TiO2 Nanoparticles Using Edible Mushroom (Pleurotus djamor) Extract: Mosquito Larvicidal, Histopathological, Antibacterial and Anticancer Effect

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The titanium dioxide nanoparticles (TiO2NPs) were synthesized by the aqueous extract from P. djamor. The UV–Vis spectrum of TiO2NPs showed maximum absorption at 345 nm and the XRD pattern reflects peaks at 2θ value of 27.51°, 36.16°, 41.31°, 54.37°, 56.68°, 62.80° and 69.04° can be indexed to the (110), (101), (111), (211), (220), (204) and (301) were confirm the presence of TiO2NPs. The FT-IR spectrum of TiO2NPs showed a peak at 3432, 1631, 1400, 1109, and 619 cm−1. The SEM and HRTEM analysis revealed the spherical shape size and EDAX pattern confirmed the purity of TiO2NPs. The particle size of TiO2NPs found to be 31 nm and the zeta potential showed 16.4mV. Antibacterial activity TiO2NPs recorded the highest zone of inhibition 33 ± 0.2 mm, 32 ± 0.4 mm and 32 ± 0.1 mm against P. fluorescens, S. aureus and C. diphtheriae. Further, the anticancer activity of TiO2NPs showed 9.08–64.71% at 6.25–100 µg/ml concentration against A549 cancer cells. The larvicidal activities of TiO2 NPs on IVth instar larvae of Ae. aegypti and Cx quinquefasciatus results showed LC50 (5.88 and 4.84 mg/l) and LC90 (22.80 and 19.33 mg/l) in better effect. The multi biological activity of TiO2NPs was utilized in future pharmacological application.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Sankar, K. Rizwana, K. S. Shivashangari, and V. Ravikumar (2015). Applied Nanosci. 5, 731.

    Article  CAS  Google Scholar 

  2. T. Vo-Dinh and P. Kasili (2005). Analy Bioanaly Chem. 382, 918.

    Article  CAS  Google Scholar 

  3. V. K. Sharma, R. A. Yngard, and Y. Lin (2009). Adv. Colloid Interface Sci. 145, 83.

    Article  PubMed  CAS  Google Scholar 

  4. D. Williams (2008). Biomater. 29, 1737.

    Article  CAS  Google Scholar 

  5. M. N. Owaid and I. J. Ibraheem (2017). European J Nanomedicine. 9, 5.

    Article  CAS  Google Scholar 

  6. P. Mohanpuria, N. K. Rana, and S. K. Yadav (2008). J. Nanoparticle Res. 10, 507.

    Article  CAS  Google Scholar 

  7. K. B. Narayanan and N. Sakthivel (2010). Adv Colloid Inter Sci. 156, 1.

    Article  CAS  Google Scholar 

  8. B. Trouiller, R. Reliene, A. Westbrook, P. Solaimani, and R. H. Schiestl (2009). Cancer Res. 69, 8784.

    Article  PubMed  CAS  Google Scholar 

  9. A. M. Allahverdiyev, E. S. Abamor, M. Bagirova, and M. Rafailovich (2011). Future Microbiol. 6, 933.

    Article  PubMed  CAS  Google Scholar 

  10. D. P. Macwan, P. N. Dave, and S. Chaturvedi (2011). J. Materials Sci. 46, 3669.

    Article  CAS  Google Scholar 

  11. J. Tian, Z. Zhao, A. Kumar, R. I. Boughton, and H. Liu (2014). Chem Soci Revie. 43, 6920.

    Article  CAS  Google Scholar 

  12. D. E. Dolmans, D. Fukumura, and R. K. Jain (2003). Nature Rev Cancer. 3, 380.

    Article  CAS  Google Scholar 

  13. A. P. Castano, P. Mroz, and M. R. Hamblin (2006). Nature Rev Cancer. 6, 535.

    Article  CAS  Google Scholar 

  14. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, and M. Sastry (2001). Angewandte Chemie Int Edition. 40, 3585.

    Article  CAS  Google Scholar 

  15. S. Gurunathan, J. Raman, S. N. A. Malek, P. A. John, and S. Vikineswary (2013). Int J Nanomed. 8, 4399.

    Google Scholar 

  16. P. Seedevi, A. R. Ganesan, K.Mohanm V. Raguraman, V. Sivakumar, P. Sivasankar, A. Shangmugam (2019). RSC adv. 9, 20472.

  17. P. Bobek, E. Ginter, M. Jurčovičová, and L. Kuniak (1991). Annals Nutrition Metabol. 35, 191.

    Article  CAS  Google Scholar 

  18. H. X. Wang and T. B. Ng (2000). Biochem Biophys Res Commun. 276, 587.

    Article  PubMed  CAS  Google Scholar 

  19. J. Raman, G. R. Reddy, H. Lakshmanan, V. Selvaraj, B. Gajendran, and R. Nanjian (2015). Process Biochem. 50, 140.

    Article  CAS  Google Scholar 

  20. M. S. Mustafa, V. Rasotgi, S. Jain, and V. Gupta (2015). Medical J Armed Forces Ind. 71, 67.

    Article  CAS  Google Scholar 

  21. A. Tarafdar, R. Raliya, W. N. Wang, P. Biswas, and J. C. Tarafdar (2013). Adv Sci Eng Med. 5, 943.

    Article  CAS  Google Scholar 

  22. C. Jayaseelan and A. A. Rahuman (2012). Parasitol Res. 111, 1369.

    Article  PubMed  Google Scholar 

  23. G. Rajakumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, and K. Velayutham (2012). Spectrochim Acta Part A Mol Biomol Spectr. 91, 23.

    Article  CAS  Google Scholar 

  24. D. J. Finney, Probit analysis (1971). Cambridge University Press, UK.

  25. K. Thandapani, M. Kathiravan, E. Namasivayam, I. A. Padiksan, G. Natesan, M. Tiwari, and V. Perumal (2018). Environ Sci Pollut Res. 25, 10328.

    Article  CAS  Google Scholar 

  26. M. C. Kiernan, S. Vucic, B. C. Cheah, M. R. Turner, A. Eisen, O. Hardiman, and M. C. Zoing (2011). The Lancet. 377, 942.

    Article  CAS  Google Scholar 

  27. A. T. Feldman, D. Wolfe (2014). Humana Press. New York, NY. 1180, 31

  28. R. Al-Bahrani, J. Raman, H. Lakshmanan, A. A. Hassan, and V. Sabaratnam (2017). Mater Lette. 186, 21.

    Article  CAS  Google Scholar 

  29. T. Mosmann (1983). J. Immunolo Meth. 65, 55.

    Article  CAS  Google Scholar 

  30. A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, D. Vistica, and M. Gray-Goodrich (1991). J. Nati Can Insti. 83, 757.

    Article  CAS  Google Scholar 

  31. W. S. Abbott (1925). J. Econ. Entomol. 18, 265.

    Article  CAS  Google Scholar 

  32. P. R. Gandhi, C. Jayaseelan, C. Kamaraj, S. R. Rajasree, and R. R. Mary (2018). J. Appl Biomed. 16, 378.

    Article  Google Scholar 

  33. T. Y. Suman, R. R. Ravindranath, D. Elumalai, P. K. Kaleena, R. Ramkumar, and P. Perumal (2015). Asian Pac. J. Trop. Dis. 5, 224.

    Article  CAS  Google Scholar 

  34. A. K. Jha, K. Prasad, A. R. Kulkarni, (2009). Coll Surf Biointer71, 226.

  35. S. M. Hunagund, V. R. Desai, J. S. Kadadevarmath, D. A. Barretto, S. Vootla, and A. H. Sidarai (2016). RSC Adv. 6, 97438.

    Article  CAS  Google Scholar 

  36. N. Sap-Iam, C. Homklinchan, R. Larpudomlert, W. Warisnoicharoen, A. Sereemaspun, and S. T. Dubas (2010). J. Applied Sci. 10, 3132.

    Article  CAS  Google Scholar 

  37. C. Sundaravadivelan, M. N. Padmanabhan, P. Sivaprasath, and L. Kishmu (2013). Parasitol Res. 112, 303.

    Article  PubMed  Google Scholar 

  38. M. Roni, K. Murugan, C. Panneerselvam, J. Subramaniam, and J. S. Hwang (2013). Parasitol Res. 112, 981.

    Article  PubMed  Google Scholar 

  39. K. Kalimuthu, C. Panneerselvam, C. Chou, L. C. Tseng, K. Murugan, K. H. Tsai, and G. Benelli (2017). Process Safety Environ Protect. 109, 82.

    Article  CAS  Google Scholar 

  40. B. Banumathi, B. Vaseeharan, T. Chinnasamy, S. Vijayakumar, M. Govindarajan, N. S. Alharbi, and G. Benelli (2017). J. Cluster Sci. 28, 2857.

    Article  CAS  Google Scholar 

  41. S. Vijayakumar, G. Vinoj, B. Malaikozhundan, S. Shanthi, and B. Vaseeharan (2015). Spect Acta Part A: Molecular Biomol Spec. 137, 886.

    Article  CAS  Google Scholar 

  42. S. Pal, Y. K. Tak, and J. M. Song (2007). Appl Environ Microbiol. 73, 1712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. M. K. Rai, S. D. Deshmukh, A. P. Ingle, and A. K. Gade (2012). J. Appl Microbiol. 112, 841.

    Article  PubMed  CAS  Google Scholar 

  44. P. Dibrov, J. Dzioba, K. K. Gosink, and C. C. Häse (2002). Antimicrobial agents Chem. 46, 2668.

    Article  CAS  Google Scholar 

  45. M. D. Balakumaran, R. Ramachandran, P. Balashanmugam, D. J. Mukeshkumar, and P. T. Kalaichelvan (2016). Microbiol Res. 182, 8.

    Article  PubMed  CAS  Google Scholar 

  46. B. G. Davis, M. A. Robinson (2002). Cur Opinion in Drug Discovery Develop. 5, 279.

  47. R. K. Gupta, R. K., N. Birbilis (2015). Corrosion Sci92, 1.

  48. M. V. Park, A. M. Neigh, J. P. Vermeulen, L. J. de la Fonteyne, H. W. Verharen, J. J. Briedé, W. H. Jong (2011). Biomater. 32, 9810.

  49. M. I. Sriram, S. B. M. Kanth, K. Kalishwaralal, and S. Gurunathan (2010). Inter J Nanomed. 5, 753.

    CAS  Google Scholar 

Download references

Acknowledgements

The author (K.M and S.M) are thankful to Science Engineering and Research Board (SERB), Department of Science and Technology, Government of India, New Delhi, for the financial assistance under EMEQ sponsored major research project (File No.SB/EMEQ-286/2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subban Murugesan.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimaran, K., Murugesan, S., Ragavendran, C. et al. Biosynthesis of TiO2 Nanoparticles Using Edible Mushroom (Pleurotus djamor) Extract: Mosquito Larvicidal, Histopathological, Antibacterial and Anticancer Effect. J Clust Sci 32, 1229–1240 (2021). https://doi.org/10.1007/s10876-020-01888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01888-3

Keywords

Navigation