Skip to main content
Log in

Fiber-optic nanosensors for single-cell monitoring

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This article is an overview of the fabrication, operating principles, and applications of fiber-optic nanobiosensors with the capability of in-vivo analysis at the single-cell level. Recently, the cross-disciplinary integration of nanotechnology, biology, and photonics has been revolutionizing important areas in molecular biology, especially diagnostics and therapy at the molecular and cellular level. Fiber-optic nanobiosensors are a unique class of biosensor that enable analytical measurements in individual living cells and the probing of individual chemical species in specific locations within a cell. This article provides a review of the research performed in our laboratory and discusses the usefulness and potential of this nanotechnology-based biosensor system in biological research and its applications to biomonitoring of individual cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vo-Dinh T, Sepaniak MJ, Griffin GD, Alarie JP (1993) Immunosensors: principles and applications, in immuno methods. Academic Press, NY, pp 85–92

    Google Scholar 

  2. Vo-Dinh T, Griffin GD, Sepaniak MJ (1991) In: Wolfbeis OS (ed) Fiber optic immunosensors, in CRC handbook: chemical sensors and biosensors. CRC Press, Boca Raton, FL, USA

  3. Vo-Dinh T et al (1987) Antibody-based fiber optics biosensor for the carcinogen benzo[a]pyrene. Appl Spectrosc 41(5):735–738

    CAS  Google Scholar 

  4. Betzig E, Trautman JK, Harris TD, Weiner JS, Kostelak RL (1991) Breaking the diffraction barrier—optical microscopy on a nanometric scale. Science 251(5000):1468–1470

    Google Scholar 

  5. Betzig E, Chichester RJ (1993) Single molecules observed by near-field scanning optical microscopy. Science 262(5138):1422–1425

    CAS  Google Scholar 

  6. Tan W, Shi ZY, Smith S, Birnbaum D, Kopelman R (1992) Submicrometer intracellular chemical optical fiber sensors. Science 258(5083):778–781

    CAS  PubMed  Google Scholar 

  7. Tan W, Shi ZY, Smith S, Kopelman R (1992) Development of submicron chemical optic sensors. Anal Chem 64(23):2985–2990

    CAS  Google Scholar 

  8. Zeisel D, Deckert V, Zenobi R, Vo-Dinh T (1998) Near-field surface-enhanced Raman spectroscopy of dye molecules adsorbed on silver island films. Chem Phys Lett 283(5–6):381–385

    CAS  Google Scholar 

  9. Deckert V, Zeisel D, Zenobi R, Vo-Dinh T (1998) Near-field surface enhanced Raman imaging of dye-labeled DNA with 100-nm resolution. Anal Chem 70(13):2646–2650

    CAS  Google Scholar 

  10. Cullum B, Griffin GD, Miller GH, Vo-Dinh T (2000) Intracellular measurements in mammary carcinoma cells using fiber-optic nanosensors. Anal Biochem 277(1):25–32

    CAS  PubMed  Google Scholar 

  11. Kasili PM et al (2002) Nanosensor for in-vivo measurement of the carcinogen benzo[a]pyrene in a single cell. J Nanosci Nanotechnol 2(6):653–658

    CAS  PubMed  Google Scholar 

  12. Vo-Dinh T, Alarie JP, Cullum BM, Griffin GD (2000) Antibody-based nanoprobe for measurement of a fluorescent analyze in a single cell. Nat Biotechnol 18(7):764–767

    CAS  PubMed  Google Scholar 

  13. Vo-Dinh T, Griffin GD, Alarie JP, Cullum BM, Sumpter B, Noid DJ (2000) Development of nanosensors and bioprobes. J Nanoparticle Res 2:17–27

    CAS  Google Scholar 

  14. Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366(6–7):540–551

    CAS  PubMed  Google Scholar 

  15. Nice EC, Catimel B (1999) Instrumental biosensors: new perspectives for the analysis of biomolecular interactions. Bioessays 21(4):339–352

    CAS  PubMed  Google Scholar 

  16. Weetall HH (1999) Chemical sensors and biosensors, update, what, where, when and how. Biosens Bioelectron 14(2):237–242

    CAS  Google Scholar 

  17. Tess ME, Cox JA (1999) Chemical and biochemical sensors based on advances in materials chemistry. J Pharm Biomed Anal 19(1–2):55–68

    CAS  PubMed  Google Scholar 

  18. Braguglia CM (1998) Biosensors: an outline of general principles and application. Chem Biochem Eng Q 12(4):183–190

    CAS  Google Scholar 

  19. Cullum B, Vo-Dinh T (2000) The development of optical nanosensors for biological measurements. Trends Biotechnol 18(9):388–393

    CAS  PubMed  Google Scholar 

  20. Kasili PM, Song JM, Vo-Dinh T (2004) Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 9(126):2799–806

    Article  Google Scholar 

  21. Song JM et al (2004) Detection of cytochrome c in a single cell using an optical nanobiosensor. Anal Chem 76(9):2591–2594

    CAS  PubMed  Google Scholar 

  22. Vo-Dinh T (1989) Chemical analysis of polycyclic aromatic compounds. Wiley, NY

    Google Scholar 

  23. Alarie J, Vo-Dinh T (1996) Antibody-based submicron biosensor for benzo[a]pyrene DNA adduct. Polycyclic Aromatic Compounds 8(1):45–52

    CAS  Google Scholar 

  24. Alarie JP, Sepaniak MJ, Vo-Dinh T (1990) Evaluation of antibody immobilization techniques for fiber optic-based fluoroimmunosensing. Anal Chim Acta 229(2):169–176

    CAS  Google Scholar 

  25. Vo-Dinh T, Tromberg BJ, Griffin GD, Ambrose KR, Sepaniak MJ, Gardenhire EM (1987) Antibody fiber optics biosensor for the carcinogen benzo(a)pyrene. Appl Spectroscopy 5(41):735

    Google Scholar 

  26. Nicholson D, Thornberry NA (1997) Caspases: killer proteases. Trends Biochem Sci 8:299–306

    Article  Google Scholar 

  27. Cohen GMAP (1997)—Caspases: the executioners of apoptosis. Biochem J 326(Pt 1):1–16

    CAS  PubMed  Google Scholar 

  28. Kasili PM, Song JM, Vo-Dinh T (2004) Optical sensor for the detection of caspase-9 activity in a single cell. J Am Chem Soc 9(126):2799–806

    Article  Google Scholar 

  29. Noodt B, Berg K, Stokke T (1996) Apoptosis and necrosis induced with light and 5-aminolaevulinic acid-derived protoporphyrin IX. Br J Cancer 74(1):22–29

    CAS  PubMed  Google Scholar 

  30. Tan WH, Shi ZY, Kopelman R (1992) Development of submicron chemical fiber-optic sensors. Anal Chem 64(23):2985–2990

    CAS  Google Scholar 

  31. Tan WH et al (1992) Submicrometer intracellular chemical optical fiber sensors. Science 258(5083):778–781

    CAS  PubMed  Google Scholar 

  32. Samuel J et al (1994) Miniaturization of organically doped sol-gel materials—a microns-size fluorescent ph sensor. Materials Lett 21(5–6):431–434

    CAS  Google Scholar 

  33. McCulloch SaUD (1995) IEE Proceedings-Optoelectronics, vol 144. p 162

  34. Tan WH, Shi ZY, Kopelman R (1995) Miniaturized fiber-optic chemical sensors with fluorescent dye—doped polymers. Sens Actuators B-Chem 28(2):157–163

    Article  Google Scholar 

  35. Song A, Parus S, Kopelman R (1997) High-performance fiber optic pH microsensors for practical physiological measurements using a dual-emission sensitive dye. Anal Chem 69(5):863–867

    CAS  PubMed  Google Scholar 

  36. Koronczi I et al (1998) Development of a submicron optochemical potassium sensor with enhanced stability due to internal reference. Sens Actuators B-Chem 51(1–3):188–195

    Article  Google Scholar 

  37. Bui JD et al (1999) Probing intracellular dynamics in living cells with near-field optics. J Neurosci Methods 89(1):9–15

    CAS  PubMed  Google Scholar 

  38. Barker SLR, Kopelman R (1998) Development and cellular applications of fiber optic nitric oxide sensors based on a gold-adsorbed fluorophore. Anal Chem 70(23):4902–4906

    CAS  PubMed  Google Scholar 

  39. Munkholm C, Walt DR, Milanovich FP (1987) Preparation of co2 fiber-optic chemical sensor. Abstr Papers Am Chem Soc 193:183-ANYL

    Google Scholar 

  40. Munkholm C, Parkinson DR, Walt DR (1990) Intramolecular fluorescence self-quenching of fluoresceinamine. J Am Chem Soc 112(7):2608–2612

    CAS  Google Scholar 

  41. Barker SLR, Thorsrud BA, Kopelman R (1998) Nitrite- and chloride-selective fluorescent nano-optodes and in in vitro application to rat conceptuses. Anal Chem 70(1):100–104

    CAS  PubMed  Google Scholar 

  42. Tan WH et al (1999) Ultrasmall for cellular. Anal Chem 71(17):606A–612A

    CAS  PubMed  Google Scholar 

  43. Barker SLR et al (1998) Fiber-optic nitric oxide-selective biosensors and nanosensors. Anal Chem 70(5):971–976

    CAS  PubMed  Google Scholar 

  44. Vo-Dinh T, Cullum BM (2003) CRC handbook for biomedical photonics. In: Vo-Dinh T (ed) Nanosensors for single-cell analysis, vol 14. CRC Press, NY

  45. Barker S, Kopelman R (1998) Development and cellular applications of fiber optic nitric oxide sensors based on a gold-adsorbed fluorophore. Anal Chem 70(23):4902–4906

    CAS  PubMed  Google Scholar 

  46. Tan W, Shi ZY, Kopelman R (1992) Development of submicron chemical fiber-optic sensors. Anal Chem 64(23):2985–2990

    CAS  Google Scholar 

  47. Uttamchandani D, McCulloch S (1996) Optical nanosensors—towards the development of intracellular monitoring. Adv Drug Delivery Rev 21:239–247

    CAS  Google Scholar 

  48. Vo-Dinh T (2002) Nanobiosensors: probing the sanctuary of individual living cells. J Cellular Biochem 39(Supp 161):154

    Article  Google Scholar 

  49. Shortreed M, Kopelman R, Kunh M, Hoyland B (1996) Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem 68(8):1414–1418

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuan Vo-Dinh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vo-Dinh, T., Kasili, P. Fiber-optic nanosensors for single-cell monitoring. Anal Bioanal Chem 382, 918–925 (2005). https://doi.org/10.1007/s00216-005-3256-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3256-7

Keywords

Navigation