Skip to main content
Log in

Pleurotus sajor caju Mediated TiO2 Nanoparticles: A Novel Source for Control of Mosquito Larvae, Human Pathogenic Bacteria and Bone Cancer Cells

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The present work was aimed to screen the antibacterial, anticancer and mosquito-larvicidal potentials of the titanium dioxide mediated nanoparticles (TiO2NPs) from the Pleurotus sajor caju fruiting bodies. The synthesized TiO2NPs were characterized using UV–Vis spectrum, FTIR, XRD, FESEM, EDX, HRTEM, Zeta potential and Particle size analyses. The XRD pattern show pure crystalline nature of the TiO2NPs and spherical shape morphology was noted. The average size of nanoparticles was 85 nm and Zeta potential analysis, resulted the surface charge of the nanomaterial was − 8.05 mV. The larvicidal activity of TiO2NPs treated IVth instar larvae of Aedes aegypti and Culex quinquefasciatus showed better LC50 and LC90 values (14.56, 26.56 and 12.76, 24.38 mg/l). The broad spectrum of antibacterial activity was observed both gram-positive and gram-negative bacteria and maximum growth inhibition zone was recorded in Klebsiella pneumoniae (8.0 ± 0.3 mm) followed by other tested organisms. The anticancer activity [bone cancer (MG-63) cell line] of TiO2NPs expressed best IC50 value as 61.34 µg/ml, which conferred the cytotoxic effects of TiO2NPs on the proliferation of MG-63 cell line. Based on the findings of present study the biosynthesized TiO2NPs from P. sajor caju served as an alternative and eco-friendly nano medicine in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Gericke and A. Pinches (2006). Hydrometallurgy 83, 132–140.

    Article  CAS  Google Scholar 

  2. J. Rajkumari, C. M. Magdalane, B. Siddhardha, J. Madhavan, G. Ramalingam, N. A. Al-Dhabi, and K. Kaviyarasu (2019). J. Photochem. Photobiol. B 201, 111667.

    Article  CAS  PubMed  Google Scholar 

  3. S. A. Moharib, N. Abd El Maksoud, H. M. Ragab, and M. Shehata (2014). J. Appl. Pharm. Sci. 4, 54.

    CAS  Google Scholar 

  4. M. N. Owaid and I. J. Ibraheem (2017). Eur. J. Nanomed. 9, 5–23.

    Article  CAS  Google Scholar 

  5. A. BoroumandMoghaddam, F. Namvar, M. Moniri, S. Azizi, and R. Mohamad (2015). Molecules 20, 16540–16565.

    Article  CAS  Google Scholar 

  6. M. Numata, T. Hasegawa, T. Fujisawa, K. Sakurai, and S. Shinkai (2004). Org. Lett. 6, 4447–4450.

    Article  CAS  PubMed  Google Scholar 

  7. J. Saxena, M. M. Sharma, S. Gupta, and A. Singh (2014). World J. Pharm. Sci. 3, 1586–1613.

    Google Scholar 

  8. A. K. Jha, K. Prasad, and A. R. Kulkarni (2009). Coll. Surf. B 71, 226–229.

    Article  CAS  Google Scholar 

  9. G. Rajakumar, A. A. Rahuman, S. M. Roopan, V. G. Khanna, G. Elango, C. Kamaraj, and K. Velayutham (2012). Spectrochim. Acta A 91, 23–29.

    Article  CAS  Google Scholar 

  10. S. Jomini, H. Clivot, P. Bauda, and C. Pagnout (2015). Environ. Pollut. 202, 196–204.

    Article  CAS  PubMed  Google Scholar 

  11. D. Weetman, B. Kamgang, A. Badolo, C. L. Moyes, F. M. Shearer, M. Coulibaly, and P. J. McCall (2018). Int. J. Environ. Res. Public Health 15, 220.

    Article  PubMed Central  Google Scholar 

  12. K. Kumar, M. Chhabra, R. Katyal, P. K. Patnaik, H. Kukreti, A. Rai, and S. Lal (2008). J. Vector Borne Dis. 45, 157.

    PubMed  Google Scholar 

  13. J. L. Kwan, S. Kluh, M. B. Madon, and W. K. Reisen (2010). Am. J. Trop. Med. Hyg. 83, 400–412.

    Article  PubMed  PubMed Central  Google Scholar 

  14. M. J. Turell (2012). J. Am. Mosq. Control Assoc. 28, 123–126.

    Article  PubMed  Google Scholar 

  15. U. Jinu, N. Jayalakshmi, A. S. Anbu, D. Mahendran, S. Sahi, and P. Venkatachalam (2017). J. Clust. Sci. 28, 489–505.

    Article  CAS  Google Scholar 

  16. U. Jinu, M. Gomathi, I. Saiqa, N. Geetha, G. Benelli, and P. Venkatachalam (2017). Microb. Pathog. 105, 86–95.

    Article  CAS  PubMed  Google Scholar 

  17. N. Arjunan, H. L. J. Kumari, C. M. Singaravelu, R. Kandasamy, and J. Kandasamy (2016). Int. J. Biol. Macromol. 92, 77–87.

    Article  CAS  PubMed  Google Scholar 

  18. M. Shoaib, A. Saeed, M. S. U. Rahman, and M. M. Naseer (2017). Mater. Sci. Eng: C. 77, 725–730.

    Article  CAS  Google Scholar 

  19. T. Akhter, M. M. Hossain, and A. A. Mamun (2013). Commun. Theor. Phys. 59, 745.

    Article  Google Scholar 

  20. American Cancer Society, (American Cancer Society, Atlanta, 2015)

  21. R. L. Siegel, K. D. Miller, and A. Jemal (2016). CA: Can. J. Clin. 66, 7–30.

    Google Scholar 

  22. Q. Xu, T. Gao, B. Zhang, J. Zeng, and M. Dai (2019). Oncol. Lett. 18, 990–996.

    PubMed  PubMed Central  Google Scholar 

  23. Y. S. Zvi, A. Singla, A. J. Chou, J. Tingling, R. Yang, B. H. Hoang, and D. S. Geller (2020). Surg. Exp. Pathol. 3, 1–10.

    Article  Google Scholar 

  24. I. M. Adjei, M. N. Temples, S. B. Brown, and B. Sharma (2018). Pharmaceutics 10, 205.

    Article  CAS  PubMed Central  Google Scholar 

  25. C. Glithero (2020). The challenges of managing bone pain in cancer. Ulst. Med. J. 89 (1), 7.

    Google Scholar 

  26. S. Anjum, B. H. Abbasi, and Z. K. Shinwari (2016). Pak. J. Bot. 48, 1731–1760.

    CAS  Google Scholar 

  27. P. R. Gandhi, C. Jayaseelan, C. Kamaraj, S. R. Rajasree, and R. R. Mary (2018). J. Appl. Biomed. 16, 378–386.

    Article  Google Scholar 

  28. K. Thandapani, M. Kathiravan, E. Namasivayam, I. A. Padiksan, G. Natesan, M. Tiwari, and V. Perumal (2018). Environ. Sci. Poll. Res. 25, 10328–10339.

    Article  CAS  Google Scholar 

  29. T. Mosmann (1983). J. Immunol. Methods 65, 55–63.

    Article  CAS  PubMed  Google Scholar 

  30. A. Monks, D. Scudiero, P. Skehan, R. Shoemaker, K. Paull, and D. Vistica (1991). J. Natl. Cancer Inst. 83, 757–766.

    Article  CAS  PubMed  Google Scholar 

  31. D. J. Finney, Probit analysis London. (Cambridge University Press, Cambridge, 1971), p. 333.

    Google Scholar 

  32. R. Aswini, S. Murugesan, and K. Kannan (2020). Int J Environ Anal Chem. https://doi.org/10.1080/03067319.2020.1718668.

    Article  Google Scholar 

  33. C. Malarkodi, K. Chitra, S. Rajeshkumar, G. Gnanajobitha, K. Paulkumar, M. Vanaja, and G. Annadurai (2013). Der Pharm. Sin. 4, 59–66.

    CAS  Google Scholar 

  34. W. Ahmad, K. K. Jaiswal, and S. Soni (2020). Inorg. Nano-Metal Chem. 1–7.

  35. S. Subhapriya and P. Gomathipriya (2018). Microb. Pathog. 116, 215–220.

    Article  CAS  PubMed  Google Scholar 

  36. T. Y. Suman, R. R. S. Ravindranath, D. Elumalai, P. K. Kaleena, R. Ramkumar, P. Perumal, and P. S. Chitrarasu (2015). Asian Pac. J. Trop. Dis. 5, 224–230.

    Article  CAS  Google Scholar 

  37. S. Saravanan, M. Balamurugan, A. Lippitz, E. Fonda, and S. Swaraj (2016). Physica B 503, 86–92.

    Article  CAS  Google Scholar 

  38. A. Rangayasami, K. Kannan, S. Joshi, and M. Subban (2020). Biocatal. Agric. Biotechnol. 27, 101690.

    Article  Google Scholar 

  39. V. Madhubala, A. Pugazhendhi, and K. Thirunavukarasu (2019). Process Biochem. 86, 186–195.

    Article  CAS  Google Scholar 

  40. V. Amutha, P. Deepak, C. Kamaraj, G. Balasubramani, D. Aiswarya, D. Arul, and P. Perumal (2019). J. Clust. Sci. 30, 797–812.

    Article  CAS  Google Scholar 

  41. G. G. Benelli (2016). Enzyme Microb. Technol. 95, 58–68.

    Article  CAS  PubMed  Google Scholar 

  42. C. Ragavendran, V. Manigandan, C. Kamaraj, G. Balasubramani, J. S. Prakash, P. Perumal, and D. Natarajan (2019). Front. Microbiol. 10, 427.

    Article  PubMed  PubMed Central  Google Scholar 

  43. R. Aswini, K. Karthik, and S. Murugesan (2020). Int. J. Pharm. Res. 12, 1493–1503.

    Google Scholar 

  44. K. J. P. Anthony, M. Murugan, M. Jeyaraj, N. K. Rathinam, and G. Sangiliyandi (2014). J. Ind. Eng. Chem. 20, 2325–2331.

    Article  CAS  Google Scholar 

  45. K. Kannan, D. Radhika, S. Vijayalakshmi, K. K. A. Sadasivuni, A. Ojiaku, and U. Verma (2020). Int. J. Environ. Anal. Chem. 1–14.

  46. G. Thirumurugan, S. M. Shaheedha, and M. D. Dhanaraju (2009). Int. J. Chem. Tech. Res. 1, 714–716.

    CAS  Google Scholar 

  47. K. Kannan, D. Radhika, M. P. Nikolova, and K. K. Sadasivuni (2020). Mater. Technol. 1–12.

  48. K. Kannan, D. D. Radhika, A. S. Nesaraj, K. K. Sadasivuni, and L. S. Krishna (2020). Inorg. Chem. Commun. 122, 108307.

    Article  CAS  Google Scholar 

  49. S. Pandiyan, L. Arumugam, S. P. Srirengan, R. Pitchan, P. Sevugan, K. Kannan, and V. Gandhirajan (2020). ACS 5, 30363–30372.

    CAS  Google Scholar 

  50. K. Kannan, D. Radhika, M. P. Nikolova, V. Andal, K. K. Sadasivuni, and L. S. Krishna (2020). Optik 218, 165112.

    Article  CAS  Google Scholar 

  51. K. Kannan, D. Radhika, K. K. Sadasivuni, K. R. Reddy, and A. V. Raghu (2020). Adv. Colloid Interface Sci. 281, 102178.

    Article  CAS  PubMed  Google Scholar 

  52. K. Karthik, S. Vijayalakshmi, A. Phuruangrat, V. Revathi, and U. Verma (2019). J. Clust. Sci. 30, 965–972.

    Article  CAS  Google Scholar 

  53. P. Surendran, A. Lakshmanan, S. S. Priya, P. Geetha, P. Rameshkumar, K. Kannan, and G. Vinitha (2021). Inorg. Chem. Commun. 124, 108397.

    Article  CAS  Google Scholar 

  54. M. Chellappa, U. Anjaneyulu, G. Manivasagam, and U. Vijayalakshmi (2015). Int. J. Nanomed. 10, 31.

    CAS  Google Scholar 

  55. M. I. Sriram, S. B. M. Kanth, K. Kalishwaralal, and S. Gurunathan (2010). Int. J. Nanomed. 5, 753.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Science Engineering and Research Board (SERB), Department of Science and Technology, Government of India, New Delhi under EMEQ sponsored major research project (Sanction Number: SB/EMEQ-286/2014). All authors thank to the Department of Botany, School of Life Sciences, Periyar University, Salem, Tamil Nadu India, for providing necessary laboratory and infrastructure facilities for the success of this research contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subban Murugesan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manimaran, K., Natarajan, D., Balasubramani, G. et al. Pleurotus sajor caju Mediated TiO2 Nanoparticles: A Novel Source for Control of Mosquito Larvae, Human Pathogenic Bacteria and Bone Cancer Cells. J Clust Sci 33, 1489–1499 (2022). https://doi.org/10.1007/s10876-021-02073-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-021-02073-w

Keyword

Navigation