Skip to main content

Advertisement

Log in

Copper Spinel Ferrite Superparamagnetic Nanoparticles as a Novel Radiotherapy Enhancer Effect in Cancer Treatment

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, copper spinel ferrite superparamagnetic nanoparticles (CuFe2O4 SPMNPs) were synthesized by a hydrothermal reaction method properly. Here, combination effect of radiotherapy (RT) and CuFe2O4 SPMNPs as radiosensitizer of X-ray radiation, on the MCF-7 breast cancer cells were assessed. Magnetic, crystalline structure, optical and morphological properties of CuFe2O4 SPMNPs were studied by vibration sample magnetometer (VSM), X-ray diffraction (XRD), Fourier transform infrared (FTIR), UV–visible spectrophotometer (UV–vis), atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cytotoxicity and viability of cancer cells exposed to superparamagnetic CuFe2O4 NPs at different concentrations was studied by MTT assay. Cell viability results showed that the CuFe2O4 SPMNPs not only had high increasing in the cell destruction under X-ray radiation (6-MV), but also no significant cytotoxicity at low concentrations was observed. Furthermore, superparamagnetic properties of CuFe2O4 NPs make it easy to localize and displace, by external magnetic field. Therefore, results suggested that CuFe2O4 SPMNPs, are a promising option as an application for treatment of breast cancer cells by RT due to their high cell destruction and low cytotoxicity effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal (2018). CA Cancer J. Clin. 68, 394–424.

    Google Scholar 

  2. A. Meidanchi and O. Akhavan (2014). Carbon 69, 230–238.

    Article  CAS  Google Scholar 

  3. C. B. Ong, L. Y. Ng, and A. W. Mohammad (2018). Renew. Sustain. Energy Rev. 81, 536–551.

    Article  CAS  Google Scholar 

  4. S. Sobhanardakani, A. Jafari, R. Zandipak, and A. Meidanchi (2018). Process Saf. Environ. Prot. 120, 348–357.

    Article  CAS  Google Scholar 

  5. T. King, M. J. Osmond-McLeod, and L. L. Duffy (2018). Trends Food Sci. Technol. 72, 62–73.

    Article  CAS  Google Scholar 

  6. A. Meidanchi and A. SalmanOgli (2012). Optik 123, 1140–1145.

    Article  CAS  Google Scholar 

  7. A. Kaphle, P. N. Navya, A. Umapathi, and H. K. J. E. C. L. Daima (2018). Environ. Chem. Lett. 16, 43–58.

    Article  CAS  Google Scholar 

  8. V. K. Yata, B. C. Tiwari, and I. J. E. C. L. Ahmad (2018). Environ. Chem. Lett. 16, 79–84.

    Article  CAS  Google Scholar 

  9. X. He, H. Deng, and H.-M. Hwang (2019). J. Food Drug Anal. 27, 1–21.

    Article  Google Scholar 

  10. S. Gouda, R. G. Kerry, G. Das, S. Paramithiotis, H.-S. Shin, and J. K. Patra (2018). Microbiol. Res. 206, 131–140.

    Article  Google Scholar 

  11. A. Ali and S. Ahmed (2018). Int. J. Biol. Macromol. 109, 273–286.

    Article  CAS  Google Scholar 

  12. N. Jafarzadeh, M. Nadafan, R. Malekfar, A. Shakeri-Zadeh, A. Meidanchi, and S. Eynali (2019). Physica E Low Dimens. Syst. Nanostruct. 114, 113562.

    Article  CAS  Google Scholar 

  13. J. Szebeni, D. Simberg, Á. González-Fernández, Y. Barenholz, and M. A. Dobrovolskaia (2018). Nat. Nanotechnol. 13, 1100–1108.

    Article  CAS  Google Scholar 

  14. M. J. Hajipour, O. Akhavan, A. Meidanchi, S. Laurent, and M. Mahmoudi (2014). RSC Adv. 4, 62557–62565.

    Article  CAS  Google Scholar 

  15. A. Meidanchi and A. Jafari (2019). Opt. Laser Technol. 111, 89–94.

    Article  CAS  Google Scholar 

  16. O. Akhavan, A. Meidanchi, E. Ghaderi, and S. Khoei (2014). J. Mater. Chem. B 2, 3306–3314.

    Article  CAS  Google Scholar 

  17. A. B. Seabra, J. S. Bernardes, W. J. Fávaro, A. J. Paula, and N. Durán (2018). Carbohydr. Polym. 181, 514–527.

    Article  CAS  Google Scholar 

  18. A. Meidanchi and A. Motamed (2020). Ceram. Int. 46, 17577–17583.

    Article  CAS  Google Scholar 

  19. A. Kefayat, F. Ghahremani, H. Motaghi, and M. A. Mehrgardi (2019). Eur. J. Pharm. Sci. 130, 225–233.

    Article  CAS  Google Scholar 

  20. T. Turnbull, M. Douglass, N. H. Williamson, D. Howard, R. Bhardwaj, M. Lawrence, D. J. Paterson, E. Bezak, B. Thierry, and I. M. Kempson (2019). ACS Nano 13, 5077–5090.

    Article  CAS  Google Scholar 

  21. A. Meidanchi (2020). Nanotechnology 31, 325706.

    Article  CAS  Google Scholar 

  22. Y.-W. Jiang, G. Gao, H.-R. Jia, X. Zhang, J. Zhao, N. Ma, J.-B. Liu, P. Liu, and F.-G. Wu (2019). ACS Biomater. Sci. Eng. 5, 1569–1579.

    Article  CAS  Google Scholar 

  23. A. Meidanchi, O. Akhavan, S. Khoei, A. A. Shokri, Z. Hajikarimi, and N. Khansari (2015). Mater. Sci. Eng. C 46, 394–399.

    Article  CAS  Google Scholar 

  24. M. T. Alexander, A. S. Alexander, P. P. Alexander, and I. Z. Vladimir (2016). Recent Pat. Anti-Cancer Drug Discov. 11, 360–375.

    Article  Google Scholar 

  25. X. Zhang, Z. Liu, Z. Lou, F. Chen, S. Chang, Y. Miao, Z. Zhou, X. Hu, J. Feng, Q. Ding, P. Liu, N. Gu, and H. Zhang (2018). Artif. Cells Nanomed. Biotechnol. 46, 975–984.

    Article  CAS  Google Scholar 

  26. M. M. Fathy, H. M. Fahmy, O. A. Saad, and W. M. Elshemey (2019). Life Sci. 234, 116756.

    Article  CAS  Google Scholar 

  27. Y. Zhang, F. Huang, C. Ren, J. Liu, L. Yang, S. Chen, J. Chang, C. Yang, W. Wang, C. Zhang, Q. Liu, X.-J. Liang, and J. Liu (2019). Adv. Sci. 6, 1801806.

    Article  Google Scholar 

  28. K. Vamvakidis, S. Mourdikoudis, A. Makridis, E. Paulidou, M. Angelakeris, and C. Dendrinou-Samara (2018). J. Colloid Interface Sci. 511, 101–109.

    Article  CAS  Google Scholar 

  29. E. Umut, M. Coşkun, F. Pineider, D. Berti, and H. Güngüneş (2019). J. Colloid Interface Sci. 550, 199–209.

    Article  CAS  Google Scholar 

  30. M. Amiri, M. Salavati-Niasari, and A. Akbari (2019). Adv. Colloid Interface Sci. 265, 29–44.

    Article  CAS  Google Scholar 

  31. J. He, S. Yang, and A. Riisager (2018). Catal. Sci. Technol. 8, 790–797.

    Article  CAS  Google Scholar 

  32. M. Albino, E. Fantechi, C. Innocenti, A. López-Ortega, V. Bonanni, G. Campo, F. Pineider, M. Gurioli, P. Arosio, T. Orlando, G. Bertoni, C. de Julián Fernández, A. Lascialfari, and C. Sangregorio (2019). J. Phys. Chem. C 123, 6148–6157.

    Article  CAS  Google Scholar 

  33. A. Jafari, M. Mosavat, A. Meidanchi, and H. Hossienkhani (2018). J. Chem. Res. 42, 73–76.

    Article  Google Scholar 

  34. A. Rajaee, X. Wensheng, L. Zhao, S. Wang, Y. Liu, Z. Wu, J. Wang, and F. Si-Shen (2018). J. Biomed. Nanotechnol. 14, 1159–1168.

    Article  CAS  Google Scholar 

  35. S. Klein, M. Kızaloğlu, L. Portilla, H. Park, T. Rejek, J. Hümmer, K. Meyer, R. Hock, L. V. R. Distel, M. Halik, and C. Kryschi (2018). Small 14, 1704111.

    Article  Google Scholar 

  36. Y. Wang, D. Tian, W. Chu, M. Li, and X. Lu (2019). Sep. Purif. Technol. 212, 536–544.

    Article  CAS  Google Scholar 

  37. K. Kombaiah, J. J. Vijaya, L. J. Kennedy, M. Bououdina, and B. Al-Najar (2018). J. Phys. Chem. Solids 115, 162–171.

    Article  CAS  Google Scholar 

  38. D. Shajari, A. Bahari, and P. Gill (2018). Colloids Surf. A Physicochem. Eng. Asp. 543, 118–125.

    Article  CAS  Google Scholar 

  39. D. Shajari, A. Bahari, P. Gill, and M. Mohseni (2017). Opt. Mater. 64, 376–383.

    Article  CAS  Google Scholar 

  40. P. Pradhan, J. Giri, G. Samanta, H. D. Sarma, K. P. Mishra, J. Bellare, R. Banerjee, and D. Bahadur (2007). J. Biomed. Mater. Res. Part B Appl. Biomater. 81, 12–22.

    Article  Google Scholar 

  41. S. Her, D. A. Jaffray, and C. Allen (2017). Adv. Drug Deliv. Rev. 109, 84–101.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Meidanchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meidanchi, A., Ansari, H. Copper Spinel Ferrite Superparamagnetic Nanoparticles as a Novel Radiotherapy Enhancer Effect in Cancer Treatment. J Clust Sci 32, 657–663 (2021). https://doi.org/10.1007/s10876-020-01832-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01832-5

Keywords

Navigation