Skip to main content
Log in

Structural, Electronic and Adsorption Characteristics of Transition Metal doped TM@C70 Endohedral Fullerenes

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Structural, electronic and adsorption characteristics of TM@C70 (TM = V, Cr, Mn, Fe, Co, Ni) endohedral fullerenes are addressed by first principles calculations, through density functional theory. A thorough analysis is conducted to explore them employing formation mechanism, adsorption energy and frontier orbitals. The essential role of each TM atom on the C70 fullerene molecule is elucidated by means of stability, charge distribution, frontier orbitals, reactivity definers, energy and induced magnetic moment. It is found that TM@C70 complexes are stable molecules. The analysis on the charge population demonstrates that the direction of charge transfer is toward the C70 cage. HOMO–LUMO energy gap modified by the TM atom is correlated to hardness, softness, electronegativity and electrophilicity index. The catalytic activity and adsorption properties of TM@C70 structures are examined through 4-nitro thiophenol. They exhibit high chemical reactivity and favorable adsorption, indicating that the TM@C70 molecules are plausible in catalytic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.

    Article  CAS  Google Scholar 

  2. W. Krätschmer, L. D. Lamb, K. Fostiropoulos, and D. R. Huffman (1990). Nature 347, 354.

    Article  Google Scholar 

  3. B. Paulus (2003). Phys. Chem. Chem. Phys. 5, 3364–3367.

    Article  CAS  Google Scholar 

  4. L. Echegoyen and L. E. Echegoyen (1998). Account. Chem. Res. 31, 593–601.

    Article  CAS  Google Scholar 

  5. C. Roland, B. Larade, J. Taylor, and H. Guo (2001). Phys. Rev. B 65, 041401(R).

    Article  CAS  Google Scholar 

  6. S. Caliskan (2018). Phys E 99, 43–50.

    Article  CAS  Google Scholar 

  7. M. Kaur, R. S. Sawhney, and D. Engles (2016). J. Mater. Res. 31, 2025–2034.

    Article  CAS  Google Scholar 

  8. H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Wörth, L. T. Scott, M. Gelmont, D. Olevano, and B. V. Issendorff (2000). Nature 407, 60.

    Article  CAS  PubMed  Google Scholar 

  9. X.-J. Zhang, M.-Q. Long, K.-Q. Chen, Z. Shuai, Q. Wan, B. S. Zou, and Y. Zhang (2009). Appl. Phys. Lett. 94, 073503.

    Article  CAS  Google Scholar 

  10. T. Pradeep, V. Vijayakrishnan, A. K. Santra, and C. N. R. Rao (1991). J. Phys. Chem. 95, 10564–10565.

    Article  CAS  Google Scholar 

  11. X. Zhong, R. Pandey, A. R. Rocha, and S. P. Karna (2010). J. Phys. Chem. Lett. 1, 1584–1589.

    Article  CAS  Google Scholar 

  12. Y.-P. An, C.-L. Yang, M.-S. Wang, X.-G. Ma, and D.-H. Wang (2009). J. Chem. Phys. 131, 024311.

    Article  PubMed  CAS  Google Scholar 

  13. K. S. Vinit and C. N. Sujith (2016). Ramachandran. J. Phys. Chem. A. 120, 6990–6997.

    Article  CAS  PubMed  Google Scholar 

  14. A. Equbal, S. Srinivasan, C. N. Ramachandran, and N. Sathyamurthy (2014). Chem. Phys. Lett. 610–611, 251–255.

    Article  CAS  Google Scholar 

  15. L. Jing-Nan, G. Bing-Lin, and H. Ru-Shan (1992). Solid State Commun. 84, 807–810.

    Article  Google Scholar 

  16. H. Sharma, I. Garg, K. Dharamvir, and V. K. Jindal (2009). J. Phys. Chem. A 113, 9002–9013.

    Article  CAS  PubMed  Google Scholar 

  17. D. S. Bethune, R. D. Johnson, J. R. Salem, M. S. de Vries, and C. S. Yannoni (1993). Nature 366, 123.

    Article  CAS  Google Scholar 

  18. E. Dietel, A. Hirsch, B. Pietzak, M. Waiblinger, K. Lips, A. Weidinger, A. Gruss, and K. P. Dinse (1999). J. Am. Chem. Soc. 121, 2432–2437.

    Article  CAS  Google Scholar 

  19. A. A. Popov, S. F. Yang, and L. Dunsch (2013). Chem. Rev. 113, 5989–6113.

    Article  CAS  PubMed  Google Scholar 

  20. J. U. Ahamed, S. Miyanaga, T. Kaneko, and R. Hatakeyama (2009). Trans. Mater. Res. Soc. Japan 34, 773–776.

    Article  Google Scholar 

  21. J. Cioslowski and E. D. Fleischmann (1991). J. Chem. Phys. 94, 3730–3734.

    Article  CAS  Google Scholar 

  22. A. Weidinger, M. Waiblinger, B. Pietzak, and T. Almeida Murphy (1998). Appl. Phys. A 66, 287–292.

    Article  CAS  Google Scholar 

  23. Y.-P. An, C.-L. Yang, M.-S. Wang, X.-G. Ma, and D.-H. Wang (2011). J. Clust. Sci. 22, 31–39.

    Article  CAS  Google Scholar 

  24. M. Bezi Javan, N. Tajabor, M. Behdani, and M. Rezaee Rokn-Abadi (2010). Phys. B 405, 4937–4942.

    Article  CAS  Google Scholar 

  25. M. B. Javan, N. Tajabor, M. R. Roknabadi, and M. Behdani (2011). Phys. E 43, 1351–1359.

    Article  CAS  Google Scholar 

  26. G. Li, R. F. Sabirianov, J. Lu, X. C. Zeng, and W. N. Mei (2008). J Chem. Phys. 128, 074304.

    Article  PubMed  CAS  Google Scholar 

  27. I. Zutic, J. Fabian, and S. Das Sarma (2004). Rev. Mod. Phys. 76, 323–410.

    Article  CAS  Google Scholar 

  28. A. R. Rocha, V. M. Garcia-Suarez, S. W. Bailey, C. J. Lambert, J. Ferrer, and S. Sanvito (2005). Nat. Mater. 4, 335–339.

    Article  CAS  PubMed  Google Scholar 

  29. D. Waldron, P. Haney, B. Larade, A. MacDonald, and H. Guo (2006). Phys. Rev. Lett. 96, 166804.

    Article  PubMed  CAS  Google Scholar 

  30. S. Caliskan and A. Laref (2014). Sci. Rep. 4, 7363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. S. Caliskan and A. Laref (2014). Phys. Chem. Chem. Phys. 16, 13191–13208.

    Article  CAS  PubMed  Google Scholar 

  32. M. T. Baei, A. Soltani, P. Torabi, and F. Hosseini (2014). Monatshefte für Chemie Chem. Mon. 145, 1401–1405.

    Article  CAS  Google Scholar 

  33. A. S. Rad and K. Ayub (2018). Mater. Res. Bull. 97, 399–404.

    Article  CAS  Google Scholar 

  34. D. R. McKenzie, C. A. Davis, D. J. H. Cockayne, D. A. Muller, and A. M. Vassallo (1992). Nature 355, 622.

    Article  CAS  Google Scholar 

  35. Y. Morinaka, R. Zhang, S. Sato, H. Nikawa, T. Kato, K. Furukawa, M. Yamada, Y. Maeda, M. Murata, A. Wakamiya, S. Nagase, T. Akasaka, and Y. Murata (2017). Angew Chem. Int. Ed. 129, 6588–6591.

    Article  Google Scholar 

  36. S. Caliskan (2019). Physica E 108, 83–89.

    Article  CAS  Google Scholar 

  37. S. Saito and A. Oshiyama (1991). Phys Rev B 44, 11532–11535.

    Article  CAS  Google Scholar 

  38. P. Wurz, K. R. Lykke, M. J. Pellin, and D. M. Gruen (1991). J Appl. Phys. 70, 6647–6652.

    Article  CAS  Google Scholar 

  39. D. Changgeng, Y. Jinlong, H. Rongsheng, and W. Kelin (2001). Phys. Rev. A 64, 043201.

    Article  CAS  Google Scholar 

  40. M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro (2002). Phys. Rev. B 65, 165401.

    Article  CAS  Google Scholar 

  41. Synopsys QuantumATK. https://www.synopsys.com/silicon/quantumatk.html.

  42. J. P. Perdew, K. Burke, and M. Ernzerhof (1996). Phys. Rev. Lett. 77, 3865–3868.

    Article  CAS  PubMed  Google Scholar 

  43. Z. Rostami, A. Hosseinian, and A. Monfared (2018). J. Mol. Graph. Model. 81, 60–67.

    Article  CAS  PubMed  Google Scholar 

  44. X. Zhang, Y. Liu, X. Ma, and B. Abulimiti (2019). J. Clust. Sci. 30, 319–328.

    Article  CAS  Google Scholar 

  45. Q. Xiang, Y. Liu, X. Zhang, Y. Duan, A. Bumaliya, M. Xiang (2019). J. Clust. Sci. https://doi.org/10.1007/s10876-019-01700-x.

    Article  Google Scholar 

  46. S. M. Lee, R. J. Nicholls, D. Nguyen-Manh, D. G. Pettifor, G. A. D. Briggs, S. Lazar, D. A. Pankhurst, and D. J. H. Cockayne (2005). Chemi. Phys. Lett. 404, 206–211.

    Article  CAS  Google Scholar 

  47. N. Troullier and J. L. Martins (1991). Phys. Rev. B 43, 1993–2006.

    Article  CAS  Google Scholar 

  48. H. J. Monkhorst and J. D. Pack (1976). Phys Rev B 13, 5188–5192.

    Article  Google Scholar 

  49. J. M. Soler, E. Artacho, J. D. Gale, A. Garcia, J. Junquera, P. Ordejon, and D. Sanchez-Portal (2002). J. Phys-Condens Mat. 14, 2745–2779.

    Article  CAS  Google Scholar 

  50. T. Koopmans (1934). Physica 1, 104–113.

    Article  Google Scholar 

  51. R. G. Pearson (1985). J Am Chem Soc 107, 6801–6806.

    Article  CAS  Google Scholar 

  52. R. G. Parr, R. A. Donnelly, M. Levy, and W. E. Palke (1978). J. Chem. Phys. 68, 3801–3807.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serkan Caliskan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caliskan, S. Structural, Electronic and Adsorption Characteristics of Transition Metal doped TM@C70 Endohedral Fullerenes. J Clust Sci 32, 77–84 (2021). https://doi.org/10.1007/s10876-020-01762-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01762-2

Keywords

Navigation