Skip to main content
Log in

Sequential Synthesis of 3d–3d Heterometallic Complexes Based on Lacunary Molybdovanadate with Magnetic Properties and Electrocatalytic Activities for Ascorbic Acid

  • original paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Two new molybdovanadate-based heterometallic complexes, (NH4)15[Na(H2O)3]2[Co(H2O)4]2[Cu8(OH)2(H2O)2(V9Mo30O130)]·30H2O (1), (NH4)15[Na(H2O)3]2[Mn(H2O)4]2[Cu8(OH)2(H2O)2(V9Mo30O130)]·36H2O (2) have been synthesized from the reaction of the {V10Mo30Cu8} precursor and transition-metal ions (Mn2+ and Co2+) in aqueous solution. Compounds 1 and 2 are isostructural and exhibit the 1D all-inorganic framework constructed from the Z-shaped {V9Mo30Cu8} anions linked with Co2+ or Mn2+ ions, which is first observed in molybdovanadate system. Magnetic investigations of 1 and 2 indicate the occurrence of strong antiferromagnetic interactions within transition-metal ions. Electrocatalytic experiments demonstrate that 1- and 2-CPEs exhibit good electrocatalytic activities towards the oxidation of ascorbic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. T. Cooper, R. W. Bowman, T. Vilbrandt, and L. Cronin (2012). Nat. Chem. 4, 349–354.

    Article  CAS  PubMed  Google Scholar 

  2. L. Cronin and A. Müller (2012). Chem. Soc. Rev. 41, 7333–7334.

    Article  CAS  PubMed  Google Scholar 

  3. D. L. Long, R. Tsunashima, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 1736–1758.

    Article  CAS  Google Scholar 

  4. J. C. Liu, Q. Han, L. J. Chen, J. W. Zhao, C. Streb, and Y. F. Song (2018). Angew. Chem. Int. Ed. 57, 8416–8420.

    Article  CAS  Google Scholar 

  5. A. Proust, B. Matt, R. Villanneau, and G. Guillemot (2012). Chem. Soc. Rev. 41, 7605–7622.

    Article  CAS  PubMed  Google Scholar 

  6. S. Landsmann, C. Lizandara-Pueyo, and S. Polarz (2010). J. Am. Chem. Soc. 132, 5315–5321.

    Article  CAS  PubMed  Google Scholar 

  7. P. Yin, P. Wu, Z. Xiao, D. Li, E. Bitterlich, and J. Zhang (2011). Angew. Chem. Int. Ed. 50, 2521–2525.

    Article  CAS  Google Scholar 

  8. J. Yan, D. L. Long, and L. Cronin (2010). Angew. Chem. Int. Ed. 49, 4117–4120.

    Article  CAS  Google Scholar 

  9. J. Yan, J. Gao, D. L. Long, H. N. Miras, and L. Cronin (2010). J. Am. Chem. Soc. 132, 11410–11411.

    Article  CAS  PubMed  Google Scholar 

  10. L. M. Dai, W. S. You, Y. G. Li, and E. B. Wang (2009). Chem. Commun. 19, 2721–2723.

    Article  CAS  Google Scholar 

  11. M. Yuan, Y. G. Li, and E. B. Wang (2003). Inorg. Chem. 42, 3670–3676.

    Article  CAS  PubMed  Google Scholar 

  12. Q. Gao, F. Y. Li, M. H. Sun, and L. Xu (2014). CrystEngCommun. 16, 7681–7688.

    Article  CAS  Google Scholar 

  13. L. X. Shi, X. W. Zhang, and C. D. Wu (2011). Dalton Trans. 40, 7791–7792.

    Article  Google Scholar 

  14. X. B. Li, Y. Ma, and E. Q. Gao (2018). Inorg. Chem. 57, 7446–7454.

    Article  CAS  PubMed  Google Scholar 

  15. J. Cai, X. Y. Zheng, J. Xie, Z. H. Yan, and X. J. Kong (2017). Inorg. Chem. 56, 8439–8445.

    Article  CAS  PubMed  Google Scholar 

  16. CrysAlisCCD and CrysAlisRED, (Oxford Diffraction Ltd, Abingdon, 2010).

  17. G. M. Sheldrick, SHELXTL, a Software for Empirical Absorption Correction (Bruker AXS Inc.: WI. Madison, 2001), Ver. 6.12.

  18. G. M. Sheldrick (2008). Acta Crystallogr. Sect. A 64, 112–114.

    Article  CAS  Google Scholar 

  19. A. L. Spek (2009). Acta Crystallogr. Sect. D 65, 148–155.

    Article  CAS  Google Scholar 

  20. Q. Gao, D. H. Hu, and D. H. Li (2019). Inorg. Chim. Acta 487, 107–111.

    Article  CAS  Google Scholar 

  21. Y. Y. Yang, L. Xu, G. G. Gao, and F. Y. Li (2009). Eur. J. Inorg. Chem. 11, 1460–1463.

    Article  CAS  Google Scholar 

  22. M. Cindrić, N. Strukan, Z. Veksli, and B. Kamenar (1996). Polyhedron 15, 2121–2126.

    Article  Google Scholar 

  23. A. M. Kaczmarek, K. V. Hecke, and R. V. Deun (2017). Inorg. Chem. 56, 3190–3200.

    Article  CAS  PubMed  Google Scholar 

  24. J. M. Li, L. Xu, N. Jiang, L. L. Zhao, and F. Y. Li (2011). Struct. Chem. 22, 1339–1345.

    Article  CAS  Google Scholar 

  25. M. Cheng, Z. Zhang, H. L. Li, and G. Y. Yang (2018). Inorg. Chem. Commun. 96, 69–72.

    Article  CAS  Google Scholar 

  26. Y. Z. Zhen, B. Liu, L. L. Li, and Y. Ma (2013). Dalton Trans. 42, 58–62.

    Article  CAS  PubMed  Google Scholar 

  27. M. T. Pope Heteropoly and Isopoly Oxometalates (Springer, Berlin, 1983).

    Book  Google Scholar 

  28. H. Liu, C. Qin, Y. G. Wei, L. Xu, and G. G. Gao (2008). Inorg. Chem. 47, 4166–4172.

    Article  CAS  PubMed  Google Scholar 

  29. L. A. Combs-Walker and C. L. Hill (1991). Inorg. Chem. 30, 4016–4026.

    Article  CAS  Google Scholar 

  30. G. Izzet, E. Ishow, J. Delaire, C. Afonso, J. C. Tabet, and A. Prous (2009). Inorg. Chem. 48, 11865–11870.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Xia, P. F. Wu, Y. G. Wei, Y. Wang, and H. Y. Guo (2006). Cryst. Growth Des. 6, 253–257.

    Article  CAS  Google Scholar 

  32. S. Y. Lin, G. F. Xu, L. Zhao, and J. K. Tang (2011). Z. Anorg. Allg. Chem. 637, 720–723.

    Article  CAS  Google Scholar 

  33. A. Dolbecq, P. Mialane, B. Keita, and L. Nadjo (2012). J. Mater. Chem. 22, 24509–24521.

    Article  CAS  Google Scholar 

  34. H. Y. Liu, H. Wu, J. F. Ma, Y. Y. Liu, and J. Yang (2011). Dalton Trans. 40, 602–613.

    Article  CAS  PubMed  Google Scholar 

  35. S. Nellutla, J. Van Tol, N. S. Dalal, L. H. Bi, and U. Kortz (2005). Inorg. Chem. 44, 9795–9806.

    Article  CAS  PubMed  Google Scholar 

  36. L. Lisnard, P. Mialane, A. Dolbecq, and J. Marrot (2007). Chem. Eur. J. 13, 3525–3536.

    Article  CAS  PubMed  Google Scholar 

  37. B. Keita, P. Mialane, F. Sécheresse, P. D. Oliveira, and L. Nadjo (2007). Electrochem. Commun. 9, 164–172.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the Thirteen Five-Year Science and Technology Research Project of the Education Department of Jilin Province (Grant No. JJKH20181234KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiao Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 623 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Q., Xu, L., Gong, JY. et al. Sequential Synthesis of 3d–3d Heterometallic Complexes Based on Lacunary Molybdovanadate with Magnetic Properties and Electrocatalytic Activities for Ascorbic Acid. J Clust Sci 30, 1131–1137 (2019). https://doi.org/10.1007/s10876-019-01576-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-019-01576-x

Keywords

Navigation