Journal of Cluster Science

, Volume 29, Issue 4, pp 555–559 | Cite as

Preparation of Graphene Through EDM Interfered with CO2

  • Kuo-Hsiung Tseng
  • Chih-Ju Chou
  • Sheng-Hao Shih
  • Der-Chi Tien
  • Chun-Yung Chang
  • Leszek Stobinski
Original Paper


Electric Discharge Method (EDM) was used to prepare graphene in deionized water which CO2 had been dissolved in advance. According to law of mass conservation, the chemical equation of EDM was balanced to prove the component was graphene. Tyndall effect, ultraviolet–visible spectroscopy (UV–Vis), Zetasizer, Transmission Electron Microscope and Raman were used for the identification of graphene. Then the impact of CO2 concentration on graphene preparation was discussed. The results showed that carbon atoms assemble into forming graphene. And zeta potential of graphene was − 31.6 mV, which indicated good suspension of graphene.


Carbon dioxide Conservation of mass Graphene Silver Electric Discharge Method 


Compliance with Ethical Standards

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.


  1. 1.
    K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, and A. A. Firsov (2005). Two-dimensional gas of massless Dirac fermions in graphene. arXiv preprint cond-mat/0509330.Google Scholar
  2. 2.
    H. Karamitaheri, M. Pourfath, R. Faez, and H. Kosina (2013). Atomistic study of the lattice thermal conductivity of rough graphene nanoribbons. IEEE Trans. Electron. Dev. 60, (7), 2142–2147.CrossRefGoogle Scholar
  3. 3.
    W. Wang, R. Du, A. Zafar, L. He, W. Zhao, Y. Chen, and Z. Ni (2017). High-performance graphene-based electrostatic field sensor. IEEE Electron. Dev. Lett. 38, 1136–1138.CrossRefGoogle Scholar
  4. 4.
    S. Lee, K. Lee, and Z. Zhong (2010). Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano lett. 10, (11), 4702–4707.CrossRefGoogle Scholar
  5. 5.
    L. Hao, J. Gallop, Q. Liu, and J. Chen (2015). Microwave method for high-frequency properties of graphene. IET Circuits Dev. Syst. 9, (6), 397–402.CrossRefGoogle Scholar
  6. 6.
    J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang, and L. Zhi (2012). Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24, (21), 2874–2878.CrossRefGoogle Scholar
  7. 7.
    G. L. Klimchitskaya and V. M. Mostepanenko (2017). Optical properties of dielectric plates coated with gapped graphene. Phys. Rev. B 95, (3), 035425.CrossRefGoogle Scholar
  8. 8.
    K. K. Chow (2017). CVD graphene-based low pump threshold bidirectional mode-locked fibre laser. Electron. Lett. 53, 1127–1128.CrossRefGoogle Scholar
  9. 9.
    J. C. Chou, W. Y. Hsu, Y. H. Liao, C. H. Lai, Y. J. Lin, P. H. You, and N. H. Nien (2017). Photovoltaic analysis of platinum counter electrode modified by graphene oxide and magnetic beads for dye-sensitized solar cell. IEEE Trans. Semicond. Manuf. 30, (3), 270–275.CrossRefGoogle Scholar
  10. 10.
    N. V. Klassen, O. A. Krivko, V. V. Kedrov, S. Z. Shmurak, A. P. Kiselev, I. M. Shmyt’ko, and V. O. Abramov (2010). Laser and electric arc synthesis of nanocrystalline scintillators. IEEE Trans. Nucl. Sci. 57, (3), 1377–1381.CrossRefGoogle Scholar
  11. 11.
    D. C. Tien, K. H. Tseng, C. Y. Liao, and T. T. Tsung (2009). Identification and quantification of ionic silver from colloidal silver prepared by electric spark discharge system and its antimicrobial potency study. J. Alloys Compd. 473, (1), 298–302.CrossRefGoogle Scholar
  12. 12.
    G. Karunakaran, R. Suriyaprabha, V. Rajendran, and N. Kannan (2014). Effect of contact angle, zeta potential and particles size on the in vitro studies of Al2O3 and SiO2 nanoparticles. IET Nanobiotechnol. 9, (1), 27–34.CrossRefGoogle Scholar
  13. 13.
    S. Sato, K. Mitsuhashi, and T. Ohara (2004). Effect of zeta potential of particles dispersed in an aqueous solution on magnetic filtration efficiency. IEEE Trans. Appl. Supercond. 14, (2), 1554–1557.CrossRefGoogle Scholar
  14. 14.
    A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, and A. K. Geim (2006). Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, (18), 187401.CrossRefGoogle Scholar
  15. 15.
    X. Y. Sun, J. F. Xue, Z. Y. Xia, and J. M. Ouyang (2014). Component analyses of urinary nanocrystallites of uric acid stone formers by combination of high-resolution transmission electron microscopy, fast Fourier transformation, energy dispersive X-ray spectroscopy, X-ray diffraction and Fourier transform infrared spectroscopy. IET Nanobiotechnol. 9, (3), 114–121.CrossRefGoogle Scholar
  16. 16.
    L. Melo, G. Burton, S. Warwick, and P. M. Wild (2015). Experimental investigation of long-period grating transition modes to monitor CO2 in high-pressure aqueous solutions. J. Lightwave Technol. 33, (12), 2554–2560.CrossRefGoogle Scholar
  17. 17.
    P. Marconcini and M. Macucci (2017). Envelope-function-based transport simulation of a graphene ribbon with an antidot lattice. IEEE Trans. Nanotechnol. 16, (4), 534–544.CrossRefGoogle Scholar
  18. 18.
    T. Otsuji, T. Watanabe, S. A. B. Tombet, A. Satou, W. M. Knap, V. V. Popov, and V. Ryzhii (2013). Emission and detection of terahertz radiation using two-dimensional electrons in III–V semiconductors and graphene. IEEE Trans. Terahertz Sci. Technol. 3, (1), 63–71.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Kuo-Hsiung Tseng
    • 1
  • Chih-Ju Chou
    • 1
  • Sheng-Hao Shih
    • 1
  • Der-Chi Tien
    • 1
  • Chun-Yung Chang
    • 1
  • Leszek Stobinski
    • 2
  1. 1.Department of Electrical EngineeringNational Taipei University of TechnologyTaipeiTaiwan, ROC
  2. 2.Materials ChemistryWarsaw University of TechnologyWarsawPoland

Personalised recommendations