Skip to main content
Log in

The Effect of FeCl3 in the Shape Control Polyol Synthesis of Silver Nanospheres and Nanowires

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Morphologically controlled nanostructures have been increasingly important because of their strongly shape dependent physical and chemical properties. This study discusses the effect of FeCl3 concentration over synthesis of silver nanospheres and nanowires (NWs) by reducing silver nitrate (AgNO3) with ethylene glycol through a simple polyol method and using poly(vinylpyrrolidone) as capping agent. X-ray diffraction (XRD), ultraviolet visible spectroscopy, scanning electron microscopy and transmission electron microscopy were performed in order to find the structural and geometrical features of silver nanostructures. XRD analysis confirmed formation of metallic silver phase and microscopic studies revealed formation of NWs with average diameters ranging from 50 to 100 nm. Different concentrations of ferric chloride (FeCl3) are used to control the morphology and shape changes of primary silver seeds. A mixture of silver nanospheres and NWs are formed at 0.05 mM concentration of FeCl3 while increasing the concentration of FeCl3 to 0.1 mM lead to formation of silver NWs. Moreover, an increase in the concentration of FeCl3 from 0.1 to 0.3 mM results in reduction of aspect ratio of silver NWs. Furthermore, more increase in FeCl3 concentration from 0.3 mM results again in formation of semi spherical shapes silver nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M. Pereiro, D. Baldomir, J. Botana, J. E. Arias, K. Warda, and L. Wojtczak (2008). J. Appl. Phys. 103, 07A315.

    Article  Google Scholar 

  2. J. W. Ciszek, L. Huang, Y. Wang, and C. A. Mirkin (2008). Small 4, 206.

    Article  CAS  Google Scholar 

  3. K. C. Lee, S. J. Lin, C. H. Lin, C. S. Tsai, and Y. J. Lu (2008). Surf. Coat. Technol. 202, 5339.

    Article  CAS  Google Scholar 

  4. R. Narayanan, C. Tabor, and M. A. El-Sayed (2008). Top. Catal. 48, 60.

    Article  CAS  Google Scholar 

  5. X. S. Shen, G. Z. Wang, X. Hong, and W. Zhu (2009). Phys. Chem. Chem. Phys. 11, 7450.

    Article  CAS  Google Scholar 

  6. S. E. Skrabalak, B. J. Wiley, M. Kim, E. V. Formo, and Y. Xia (2008). Nano Lett. 8, 2077.

    Article  CAS  Google Scholar 

  7. N. L. Rosi and C. A. Mirkin (2005). Chem. Rev. 105, 1547.

    Article  CAS  Google Scholar 

  8. A. A. Ashkarran, A. Iraji Zad, M. M. Ahadian, and M. R. Hormozi Nezhad (2009). Eur. Phys. J. Appl. Phys. 48, 10601.

    Article  Google Scholar 

  9. F. Chen, N. Alemu, and R. L. Johnston (2011). AIP Adv. 1, 032134.

    Article  Google Scholar 

  10. S. Zhang, H. Wei, K. Bao, U. Hakanson, N. J. Halas, P. Nordlander, and H. Xu (2011). Phys. Rev. Lett. 107, 096801.

    Article  Google Scholar 

  11. S. E. Hunyadi and C. J. Murphy (2009). J. Clust. Sci. 20, 319.

    Article  CAS  Google Scholar 

  12. M. Rycenga, J. M. McLellan, and Y. Xia (2008). Adv. Mater. 20, 2416.

    Article  CAS  Google Scholar 

  13. M. Rycenga, X. Xia, C. H. Moran, F. Zhou, D. Qin, Z. Y. Li, and Y. Xia (2011). Angew. Chem. Int. Ed. 50, 5473.

    Article  CAS  Google Scholar 

  14. S. E. Skrabalak and Y. Xia (2009). ACS Nano 3, 10.

    Article  CAS  Google Scholar 

  15. Y. Sun and Y. Xia (2002). Science 298, 2176.

    Article  CAS  Google Scholar 

  16. B. Wiley, Y. Sun, B. Mayers, and Y. Xia (2005). Chem. Eur. J. 11, 454.

    Article  CAS  Google Scholar 

  17. B. Wiley, Y. Sun, and Y. Xia (2007). Acc. Chem. Res. 40, 1067.

    Article  CAS  Google Scholar 

  18. B. J. Wiley, Y. Chen, J. M. McLellan, Y. Xiong, Z. Y. Li, D. Ginger, and Y. Xia (2007). Nano Lett. 7, 1032.

    Article  CAS  Google Scholar 

  19. F. Bonet, V. Delmas, S. Grugeon, R. Herrera Urbina, P. Y. Silvert, and K. Tekaia-Elhsissen (1999). Nanostruct. Mater. 11, 1277.

    Article  CAS  Google Scholar 

  20. Y. Fang, Z. Li, Y. Huang, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu (2010). Nano Lett. 10, 1950.

    Article  CAS  Google Scholar 

  21. E. J. Lee, M. H. Chang, Y. S. Kim, and J. Y. Kim (2013). APL Mater. 1, 042118.

    Article  Google Scholar 

  22. L. R. Shobin and S. Manivannan (2014). Electron. Mater. Lett. 10, 1027.

    Article  CAS  Google Scholar 

  23. J. Mock, M. Barbic, D. R. Smith, D. A. Schultz, and S. J. Schultz (2002). Chem. Phys. 116, 6759.

    Google Scholar 

  24. B. Wiley, Y. Sun, and Y. Xia (2005). Langmuir 21, 8086.

    Article  Google Scholar 

  25. R. Long, S. Zhou, B. J. Wiley, and Y. Xiong (2014). Chem. Soc. Rev. 43, 6288.

    Article  CAS  Google Scholar 

  26. A. A. Ashkarran (2010). Curr. Appl. Phys. 10, 1442.

    Article  Google Scholar 

  27. C. S. Thaxton and C. A. Mirkin (2005). Nat. Biotechnol. 23, 681.

    Article  CAS  Google Scholar 

  28. A. A. Ashkarran, S. M. Aghigh, M. Kavianipour, and N. J. Farahani (2011). Curr. Appl. Phys. 11, 1048.

    Article  Google Scholar 

  29. K. E. Korte, E. Skrabalak, and Y. N. Xia (2008). J. Mater. Chem. 18, 437.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Akbar Ashkarran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashkarran, A.A., Derakhshi, M. The Effect of FeCl3 in the Shape Control Polyol Synthesis of Silver Nanospheres and Nanowires. J Clust Sci 26, 1901–1910 (2015). https://doi.org/10.1007/s10876-015-0887-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-015-0887-5

Keywords

Navigation