Skip to main content
Log in

A New Vanadium (V) Coordination Based on [(H2C4O4)VO2F] 2n−n Polymeric Chains and Diethylammonium Cations, Synthesis, Crystal Structure, Vibrational and Optical Properties

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

An original vanadium (V) oxyfluoride, containing a polymeric [(H2C4O4)VO2F] 2n−n chains and diethylammonium cations, has been synthesized by slow evaporation from aqueous solutions and characterized by single-crystal X-ray diffraction and vibrational spectroscopies (IR and Raman). (Hdea)2[(H2C4O4)VO2F]·H2O (dea: diethylamine) crystallizes in the monoclinic system, space group C2/c. The structure can be described as a succession of equivalent layers perpendicular to b. The anionic [(H2C4O4)VO2F] 2n−n polymeric chain is composed of trigonal bipyramidal VO4F polyhedra and fumaric acid (H2C4O4) groups sharing O2 corners. The cohesion of the structure is provided by a network hydrogen-bonding. The IR and Raman spectra exhibit characteristic bands of all groups present in the structure. Additionally UV–Vis diffuse reflectance spectrum was recorded in order to investigate the band gap nature. The measurements show that this compound exhibit semiconducting behavior with an optical band gap of 3.51 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Butler, M. J. Clague, and G. E. Meister (1994). Chem. Rev. 94, 625–638.

    Article  CAS  Google Scholar 

  2. K. H. Thompson, J. H. McNeil, and C. Orvig (1999). Chem. Rev. 99, 2561–2572.

    Article  CAS  Google Scholar 

  3. D. C. Crans (2000). J. Inorg. Biochem. 80, 123–131.

    Article  CAS  Google Scholar 

  4. D. C. Crans, J. J. Smee, E. Gaidamauskas, and L. Yang (2004). Chem. Rev. 104, 849–902.

    Article  CAS  Google Scholar 

  5. C. N. Caughlan, H. M. Smith, and K. Watenpaugh (1966). Inorg. Chem. 5, 2131–2134.

    Article  CAS  Google Scholar 

  6. W. Priebsch and D. Rehder (1990). Inorg. Chem. 29, 3013–3019.

    Article  CAS  Google Scholar 

  7. D. C. Crans, R. W. Marshman, M. S. Gottlieb, O. P. Anderson, and M. M. Miller (1992). Inorg. Chem. 31, 4939–4949.

    Article  CAS  Google Scholar 

  8. K. Waltersson (1979). J. Solid. State. Chem. 28, 121–131.

    Article  CAS  Google Scholar 

  9. T. Mahenthirarajah, Y. Li, and P. Lightfoot (2008). Inorg. Chem. 47, 9097–9102.

    Article  CAS  Google Scholar 

  10. F. Himeur, P. K. Allan, S. J. Teat, R. J. Goff, R. E. Morris, and P. Lightfoot (2010). Dalton. Trans. 39, 6018–6020.

    Article  CAS  Google Scholar 

  11. F. H. Aidoudi, D. W. Aldous, R. J. Goff, M. Z. Slawin Alexandra, J. P. Attfield, R. E. Morris, and P. Lightfoot (2011). Nat. Chem. 3, 801–806.

    Article  CAS  Google Scholar 

  12. M. D. Donakowski, R. Gautier, J. Yeon, D. T. Moore, J. C. Nino, P. S. Halasyamani, and K. R. Poeppelmeier (2012). J. Am. Chem. Soc. 134, 7679–7689.

    Article  CAS  Google Scholar 

  13. D. W. Aldous, A. M. Z. Slawin, and P. Lightfoot (2008). J. Solid. State. Chem. 181, 3033–3036.

    Article  CAS  Google Scholar 

  14. D. W. Aldous, N. F. Stephens, P. Lightfoot (2007) Dalton Trans. 2007, 4207–4213. doi:10.1039/B708889B.

  15. D. W. Aldous, N. F. Stephens, P. Lightfoot (2007) Dalton Trans. 2007, 2271–2282. doi:10.1039/b702146a.

  16. N. F. Stephens, M. Buck, and P. Lightfoot (2005). J. Mater. Chem. 15, 4298–4300.

    Article  CAS  Google Scholar 

  17. F. H. Aidoudi, C. Black, K. S. A. Arachchige, M. Z. S. Alexandra, R. E. Morris, and P. Lightfoot (2014). Dalton Trans. 43, 568–575.

    Article  CAS  Google Scholar 

  18. F. H. Aidoudi, P. J. Byrne, P. K. Allan, S. J. Teat, P. Lightfoot, and R. E. Morris (2011). Dalton Trans. 40, 4324–4331.

    Article  CAS  Google Scholar 

  19. L. Clark, J. C. Orain, F. Bert, M. A. De Vries, F. H. Aidoudi, R. E. Morris, P. Lightfoot, J. S. Lord, M. T. F. Telling, P. Bonville, J. P. Attfield, P. Mendels, and A. Harisson (2013). Phys. Rev. Lett. 110, 207208.

    Article  CAS  Google Scholar 

  20. D. W. Aldous, N. F. Stephens, and P. Lightfoot (2007). Inorg. Chem. 46, 3996–4001.

    Article  CAS  Google Scholar 

  21. S. Rostamzadehmansor, G. Ebrahimzadehrajaei, S. Ghammamy, K. Mehrani, and L. Saghatforoush (2008). J. Fluor. Chem. 129, 674–679.

    Article  CAS  Google Scholar 

  22. P. DeBurgomaster, W. Ouellette, H. Liu, C. J. O’Connor, G. T. Yee, and J. Zubieta (2010). Inorg. Chim. Acta. 363, 1102–1113.

    Article  CAS  Google Scholar 

  23. R. C. Haushalter, L. M. Meyer, and J. Zubieta in M. H. Chisholm (ed.), Early Transition Metal Clusters with π-Donor Ligands (VCH Publishers, New York, 1995), pp. 217–246.

    Google Scholar 

  24. D. J. Chesnut, D. Hagrman, P. J. Zapf, R. P. Hammond, R. L. Laduca, R. C. Haushalter, and J. Zubieta (1999). Coord. Chem. Rev. 190–192, 737.

    Article  Google Scholar 

  25. R. C. Finn, J. Zubieta, and R. C. Haushalter (2003). Prog. Inorg. Chem. 51, 421.

    CAS  Google Scholar 

  26. M. I. Khan, Q. Chen, H. Höpe, S. Parkin, C. J. O’Connor, and J. Zubieta (1993). Inorg. Chem. 32, 2929–2937.

    Article  CAS  Google Scholar 

  27. C. Ninclaus, D. Riou and G. Férev (1997) Chem. Commun. 851–852. 1997, doi:10.1039/A607863J.

  28. A. Müller, R. Rohlfing, A.-L. Barra, and D. Gatteschi (1993). Adv. Mater. 5, 915–917.

    Article  Google Scholar 

  29. A. Müller, J. Meyer, H. Bögge, A. Stammlerand, and A. Botar (1998). Chem. Eur. J. 4, 1388–1397.

    Article  Google Scholar 

  30. S. Ahmad, A. A. Isab, S. Ali, and A. R. Al-Arfaj (2006). Polyhedron. 25, 1633–1645.

    Article  CAS  Google Scholar 

  31. M. D. Smith, S. M. Blau, K. B. Chang, T. T. Tran, M. Zeller, P. S. Halasyamani, J. Schrier, and A. J. Norquist (2012). J. Solid. State. Chem. 195, 86–93. doi:10.1016/j.jssc.2012.02.024.

    Article  CAS  Google Scholar 

  32. M. Aureliano and D. C. Crans (2009). J. Inorg. Biochem. 103, 536–546. doi:10.1016/j.jinorgbio.2008.11.010.

    Article  CAS  Google Scholar 

  33. A. Sarkar and S. Pal (2008). Polyhedron. 27, 3472–3476. doi:10.1016/j.poly.2008.08.001.

    Article  CAS  Google Scholar 

  34. V. W. Day, W. G. Klemperer, and O. M. Yaghi (1989). J. Am. Chem. Soc. 111, 4518–4519.

    Article  CAS  Google Scholar 

  35. V. W. Day, W. G. Klemperer, and O. M. Yaghi (1989). J. Am. Chem. Soc. 111, 5959–5961.

    Article  CAS  Google Scholar 

  36. D. Hou, K. S. Hagen, and C. L. Hill (1992). J. Am. Chem. Soc. 114, 5864–5866.

    Article  CAS  Google Scholar 

  37. D. Hou, K. S. Hagen, C. L. Hill (1993) J. Chem. Soc Chem. Commun. 426–428. doi: 10.1039/C39930000426.

  38. G. A. Senchyk, V. O. Bukhan’ko, A. B. Lysenko, H. Krautscheid, E. B. Rusanov, A. N. Chernega, M. Karbowiak, and K. V. Domasevitch (2012). Inorg. Chem. 51, (15), 8025–8033. doi:10.1021/ic3000894.

    Article  CAS  Google Scholar 

  39. Z. Bircsak and W. T. A. Harrison (1998). J. Solid. State. Chem. 140, 272–277.

    Article  CAS  Google Scholar 

  40. Y.-M. Cui, Y.-J. Cai, and W. Chem (2011). Synth. React. Inorg. Met.-org. Chem. 41, 1244–1248. doi:10.1080/15533174.2011.591877.

    Article  CAS  Google Scholar 

  41. M. Padmanabhan, J. C. Joseph, A. Thirumurugan, C. N. R. Rao (2008) Dalton. Trans. 2809–2811. doi: 10.1039/b718623a (and references therein).

  42. J. Song, B.-C. Wang, H.-M. Hu, L. Gou, Q.-R. Wu, X.-L. Yang, Y.-Q. Shangguan, F.-X. Dong, and G.-L. Xue (2011). Inorg. Chim. Acta. 366, 134–140. doi:10.1016/j.ica.2010.10.020.

    Article  CAS  Google Scholar 

  43. K N. Lazarou, A. Terzis, S P. Perlepes, C P. Raptopoulou (2010) Polyhedron. 29, 46–53. doi: 10.1016/j.poly.2009.05.075.

  44. J. Do, Y. Lee, J. Kang, and A. J. Jacobson (2012). Inorg. Chim. Acta. 382, 191–194. doi:10.1016/j.ica.2011.11.061.

    Article  CAS  Google Scholar 

  45. W. Gong, H. Niu, J. Zhang, J. Song, C. Mao, and S. Zhang (2014). Inorg. Chim. Acta. 418, 93–98. doi:10.1016/j.ica.2014.04.009.

    Article  CAS  Google Scholar 

  46. D. M. Young, U. Geiser, A. J. Schultz, and H. H. Wang (1998). J. Am. Chem. Soc. 120, 1331.

    Article  CAS  Google Scholar 

  47. K. Seki, S. Takamizawa, W. Mori (2001) Chem. Lett. 30(2), 122–123. doi:10.1246/cl.2001.122.

  48. S. Konar, E. Zangrando, and N. R. Chaudhuri (2003). Inorg. Chim. Acta. 355, 264.

    Article  CAS  Google Scholar 

  49. Y. Zheng and H. Xie (2004). J. Solid. State. Chem. 177, 1352.

    Article  CAS  Google Scholar 

  50. D. Ghoshal, G. Mostafa, T. K. Maji, E. Zangrando, T. Lu, J. Ribas, and N. R. Chaudhuri (2004). New J. Chem. 28, 1204.

    Article  CAS  Google Scholar 

  51. N. P. Porollo, Z. G. Aliev, G. I. Dzhardimalieva, I. N. Ivleva, I. E. Uflyand, A. D. Pomogailo, and N. S. Ovanesyan (1997). Russ. Chem. Bull. 46, 362.

    Article  CAS  Google Scholar 

  52. E. Pajtasova, E. Jona, M. Koman, and D. Ondrusova (2001). Pol. J. Chem. 75, 1209.

    CAS  Google Scholar 

  53. A. Y. Robin and K. M. Fromm (2006). Coord. Chem. Rev. 250, 2127.

    Article  CAS  Google Scholar 

  54. Y. Zhou, M. Hong, X. Wu (2006) Chem. Commun. 135–143. doi: 10.1039/B509458P.

  55. C. Coulon, H. Miyasaka, and R. Clérac (2003). Struct. Bond. 122, 163.

    Article  Google Scholar 

  56. D-K. Bucar, G.S. Papaefstathiou, T.D. Hamilton, Q.L. Chu, I.G. Georgiev, L.R. MacGillivray (2007) Eur. J. Inorg. Chem. 2007, 4559–4568. doi:10.1002/ejic.200700442.

  57. J. Y. Lee, O. K. Fartha, J. Roberts, K. A. Scheidt, S. T. Nguyen, and J. T. Hupp (2009). Chem. Soc. Rev. 38, 1450.

    Article  CAS  Google Scholar 

  58. L. Ma, C. Abney, and W. Lin (2009). Chem. Soc. Rev. 38, 1248.

    Article  CAS  Google Scholar 

  59. M. Kurmoo (2009). Chem. Soc. Rev. 38, 1353.

    Article  CAS  Google Scholar 

  60. M. D. Allendorf, C. A. Bauer, R. K. Bhakta, and R. J. T. Houk (2009). Chem. Soc. Rev. 38, 1330.

    Article  CAS  Google Scholar 

  61. L. J. Murray, M. Dincӑ, and J. R. Long (2009). Chem. Soc. Rev. 38, 1294.

    Article  CAS  Google Scholar 

  62. G. K. H. Shimizu, R. Vaidhyanathan, and J. M. Taylor (2009). Chem. Soc. Rev. 38, 1430.

    Article  CAS  Google Scholar 

  63. C. P. Raptopoulou, V. Tangoulis, and E. Devlin (2002). Angew. Chem. Int. Ed. 41, 2386.

    Article  CAS  Google Scholar 

  64. A. K. Boudalis, C. P. Raptopoulou, B. Abarca, R. Ballesteros, M. Chadlaoui, J.-P. Tuchagues, and A. Terzis (2006). Angew. Chem. Int. Ed. 45, 432.

    Article  CAS  Google Scholar 

  65. A.K. Boudalis, C.P. Raptopoulou, V. Psycharis, Y. Sanakis, B. Abarca, R. Ballesteros, M. Chadlaoui (2007) Dalton. Trans. 2007, 3582–3589. doi:10.1039/B705962K.

  66. A.K. Boudalis, C.P. Raptopoulou, V. Psycharis, B. Abarca, R. Ballesteros (2008) Eur. J. Inorg, Chem. 2008, 3796–3801. doi:10.1002/ejic.200800400.

  67. A. K. Boudalis, M. Pissas, C. P. Raptopoulou, V. Psycharis, B. Abarca, and R. Ballesteros (2008). Inorg. Chem. 47, 10674.

    Article  CAS  Google Scholar 

  68. A. N. Georgopoulou, C. P. Raptopoulou, V. Psycharis, R. Ballesteros, B. Abarca, and A. K. Boudalis (2009). Inorg. Chem. 48, 3167.

    Article  CAS  Google Scholar 

  69. Th.C Stamatatos, D. Foguet-Albiol, S.-C. Lee, C.C. Stoumpos, C.P. Raptopoulou, A. Terzis, W. Werndofer, S.P. Perlepes, G. Christou (2007) J. Am. Chem. Soc. 129, 9484.

  70. Bruker APEX2 and SAINT (Bruker AXS Inc., Madison, 2009).

    Google Scholar 

  71. A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, and R. Spagna (1999). J. Appl. Crystallogr 32, 115–119.

    Article  CAS  Google Scholar 

  72. G. Sheldrick (2008). Acta. Cryst A64, 112–122.

    Article  Google Scholar 

  73. L. J. Farrugia (1999). J. Appl. Crystallogr. 32, 837–838.

    Article  CAS  Google Scholar 

  74. A. L. Spek Utrecht University (Utrecht, The Netherlands, 2001).

    Google Scholar 

  75. K. Brandenburg DIAMOND 2.0, Visual Crystal Structure Information System (Crystal impact Gbr, Bonn, 2007).

    Google Scholar 

  76. I. D. Brown (1976). Acta Cryst. A32, 24–31. doi:10.1107/S0567739476000041.

    Article  Google Scholar 

  77. Addison. A. W, Rao. T. N, Reedijk. J, Van Rijn. J, Verschoor. G. C (1984) J. Chem. Soc. Dalton. Trans. 1349–1356.

  78. I. D. Brown (1992). Acta. Cryst. B48, 553–572.

    Article  CAS  Google Scholar 

  79. N. E. Bresse and M. O’Keeffe (1991). Acta. Cryst. B47, 192–197.

    Article  Google Scholar 

  80. I. Omri, M. Graia, and T. Mhiri (2014). J. Clust. Sci.. doi:10.1007/s10876-014-0768-3.

    Google Scholar 

  81. P. DeBurgomaster and J. Zubieta (2010). Acta. Cryst. E66, m1303.

    Google Scholar 

  82. N. Buchholz, M. Leimkühler, L. Kiriazis, and R. Mattes (1988). Inorg. Chem. 27, 2035–2039.

    Article  CAS  Google Scholar 

  83. E. Bozkurt, İ. Uçar, İ. Kartal, A. Bulut, and O. Büyükgüngör (2008). J. Phys. Chem. Solids. 69, 2109–2115. doi:10.1016/j.jpcs.2008.03.011.

    Article  CAS  Google Scholar 

  84. J. Kang, Y. Yang, S. Pan, H. Yu, and Z. Zhou (2014). J. Mol. Struct. 1056–1057, 79–83. doi:10.1016/j.molstruc.2013.10.009.

    Article  Google Scholar 

  85. T. Sivakumar, H. Y. Chang, J. Baek, and P. S. Halasyamani (2007). Chem. Mater. 19, (19), 4710–4715. doi:10.1021/cm071188p.

    Article  CAS  Google Scholar 

  86. A. Grzechnik and P. F. McMillan (1995). J. Phys. Chem. Solids 56, 159–164.

    Article  CAS  Google Scholar 

  87. H. Nefzi, F. Sediri, H. Hamzoui, and N. Gharbi (2012). J. Solid. State. Chem. 190, 150–156. doi:10.1016/j.jssc.2012.02.013.

    Article  CAS  Google Scholar 

  88. Y.-T. Li, C.-Y. Zhu, Z.-Y. Wu, M. Jiang, and C.-W. Yan (2010). Transit. Met. Chem. 35, 597–603. doi:10.1007/s11243-010-9369-7.

    Article  CAS  Google Scholar 

  89. J. Chrappová, P. Schwendt, and J. Marek (2005). J. Fluor. Chem. 126, 1297–1302. doi:10.1016/j.jfluchem.2005.06.009.

    Article  Google Scholar 

  90. L. Mai and C. Han (2008). Mater. Lett. 62, 1458–1461. doi:10.1016/j.matlet.2007.08.088.

    Article  CAS  Google Scholar 

  91. N. V. Venkataraman, S. Bhagyalakshmi, S. Vasudevan, and R. Seshadri (2002). Phys. Chem. Chem. Phys. 4, 4533–4538. doi:10.1039/b204983j.

    Article  CAS  Google Scholar 

  92. J. L. Castro, M. R. López-Ramírez, J. F. Arenas, and J. C. Otero (2005). Vib. Spectrosc. 39, 240–243. doi:10.1016/j.vibspec.2005.04.007.

    Article  CAS  Google Scholar 

  93. Z.-H. Li and H.-D. Bai (2008). J. Zhejiang. Univ. Sci A. 9, (1), 143–148. doi:10.1631/jzus.A071180.

    Article  CAS  Google Scholar 

  94. Y. Xia, P. Wu, Y. Wei, Y. Wang, and H. Guo (2006). Cryst. Growth Des. 6, (1), 253–257.

    Article  CAS  Google Scholar 

  95. J.-H. Liao, J.-S. Juang, and Y.-C. Lai (2006). Cryst. Growth Des. 6, (2), 354–356.

    Article  CAS  Google Scholar 

  96. Elizabeth E. Chain (1991). Appl. Opt. 30, (19), 2782–2787.

    Article  CAS  Google Scholar 

  97. M. Benmoussa, E. Ibnouelghazi, A. Bennouna, and E. L. Ameziane (1995). Thin. Solid. Films. 265, 22–28.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The crystal data collection of the title compound was done in the “Department of Chemistry, Faculty of Sciences of Sfax, University of Sfax, BP 1171, 3038 Sfax, Tunisia”. We are grateful to Abdelhamid Ben Salah who supervised this experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issam Omri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 128 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omri, I., Mhiri, T. & Graia, M. A New Vanadium (V) Coordination Based on [(H2C4O4)VO2F] 2n−n Polymeric Chains and Diethylammonium Cations, Synthesis, Crystal Structure, Vibrational and Optical Properties. J Clust Sci 26, 1267–1278 (2015). https://doi.org/10.1007/s10876-014-0811-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0811-4

Keywords

Navigation