Skip to main content

Single-Chain Magnets:Theoretical Approach and Experimental Systems

  • Chapter
  • First Online:
Single-Molecule Magnets and Related Phenomena

Part of the book series: Structure and Bonding ((STRUCTURE,volume 122))

Abstract

Recently, a new class of nano-magnets has been discovered and called single-chain magnets (SCMs) by analogy to the single-molecule magnets (SMMs). These materials are composed of magnetically isolated chains that can be individually magnetized. As purely one-dimensional systems are known to have a long-range order only at T = 0 K, these SCM materials remains in their paramagnetic state at any finite temperature. Nevertheless, the combination of a large uni-axial anisotropy and large magnetic interactions between the high-spin magnetic units of the chain promotes long relaxation times and the system can behave as a magnet. Although the presently available materials possess long relaxation times only below about 10 K, the limitations to produce SCMs compatible with industrial applications seem less severe than for SMMs. This is one of the reasons explaining why the chemistry and the physics on SCMs have quickly become a very active field. In the first part of this review, we have summarized the last developments on the theoretical understanding of the SCM behavior. In these systems, the key analysis of the magnetic properties is the comparison between static susceptibility and dynamic data that leaves no arbitrary parameter and allows an unambiguous identification of a SCM. The second part of this review is devoted to the experimental SCM systems reported so far. In particular, selected examples are presented to illustrate how it is possible to characterize experimentally a material with SCM properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

SCM:

single-chain magnet

SMM:

single-molecule magnet

EPR:

electron paramagnetic resonance spectroscopy

DFT:

density functional theory

1D:

one dimensional

NMR:

nuclear magnetic resonance

μSR:

muon spin rotation

References

  1. Kodoma RH (1999) J Magn Magn Mater 200:259

    Google Scholar 

  2. Thompson DA, Best JS (2000) IBM J Res Dev 44:311

    Article  CAS  Google Scholar 

  3. Weller D, Moser A (1999) IEEE Trans Magn 35:4423

    Article  CAS  Google Scholar 

  4. Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogués J (2003) Nature 423:850

    Article  CAS  Google Scholar 

  5. Christou G, Gatteschi D, Hendrickson DN, Sessoli R (2000) MRS Bull 25:66

    CAS  Google Scholar 

  6. Gatteschi D, Sessoli R (2003) Angew Chem Int Ed 42:268

    Article  CAS  Google Scholar 

  7. Ritter SK (2004) Chem Eng News 82:29

    Article  Google Scholar 

  8. Clérac R, Miyasaka H, Yamashita M, Coulon C (2002) J Am Chem Soc 124:12837

    Article  CAS  Google Scholar 

  9. Thompson CJ (1972) In: Domb C, Green MS (eds) Phase Transitions and Critical Phenomena, vol 1. Academic Press, London

    Google Scholar 

  10. Delhaès P, Drillon M (eds) (1987) Organic and inorganic low-dimensional crystalline materials, vol 168. NATO ASI Series B:Physics. Plenum Press, New York

    Google Scholar 

  11. Georges R, Borras-Almenar JJ, Coronado E, Curely J, Drillon M (2001) In: Miller JS, Drillon M (eds) Magnetism: Molecules to Materials. Wiley, New York, p 1

    Chapter  Google Scholar 

  12. Suzuki M, Tsujiyama B, Katsura S (1967) J Math Phys 8:124

    Article  CAS  Google Scholar 

  13. Ising E (1925) Z Phys 31:253

    Article  CAS  Google Scholar 

  14. Fisher ME (1963) J Math Phys 4:124

    Article  Google Scholar 

  15. Steiner M, Villain J, Windsor CG (1976) Adv Phys 25:87

    Article  CAS  Google Scholar 

  16. Boersma F, de Jonge WJM, Kopinga K (1981) Phys Rev B 23:186

    Article  CAS  Google Scholar 

  17. Loveluck JM, Lovesey SW, Aubry S (1975) J Phys C: Solid State Phys 8:3841

    Article  Google Scholar 

  18. Barbara B (1973) J Physique 34:1039 (1994) J Magn Magn Mat 129:79

    Article  CAS  Google Scholar 

  19. Kawasaki K (1972) In: Domb C, Green MS (eds) Phase Transitions and Critical Phenomena, vol 2. Academic Press, London, p 443

    Google Scholar 

  20. Glauber RJ (1963) J Math Phys 4:294

    Article  Google Scholar 

  21. Suzuki M, Kubo R (1968) J Phys Soc Japan 24:51

    Article  Google Scholar 

  22. Cordery R, Sarker S, Tobochnik J (1981) Phys Rev B 24:5402

    Article  Google Scholar 

  23. Haake F, Thol K (1980) Z Phys B Condens Matt 40:219

    Article  Google Scholar 

  24. Felderhof BU, Suzuki M (1971) Physica 56:43

    Article  Google Scholar 

  25. Coulon C, Clérac R, Lecren L, Wernsdorfer W, Miyasaka H (2004) Phys Rev B 69:132408

    Article  CAS  Google Scholar 

  26. Luscombe JH (1987) Phys Rev B 36:501

    Article  Google Scholar 

  27. Droz M, Kamphorst Leal da Silva J, Malaspinas A (1986) Phys Lett 115:448

    Article  Google Scholar 

  28. Imry Y, Montano PA, Hone D (1975) Phys Rev B 12:253

    Article  Google Scholar 

  29. Luscombe JH, Luban M, Reynolds JP (1996) Phys Rev E 53:5852

    Article  CAS  Google Scholar 

  30. Vindigni A, Rettori A, Bogani L, Caneschi A, Gatteschi D, Sessoli R, Novak MA (2005) Appl Phys Lett 87:073102

    Article  CAS  Google Scholar 

  31. Wortis M (1974) Phys Rev B 10:4665

    Article  Google Scholar 

  32. Matsubara F, Yoshimura K, Katsura S (1973) Can J Phys 51:1053

    Google Scholar 

  33. Dhar D, Barma M (1980) J Statist Phys 22:259

    Article  Google Scholar 

  34. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2001) Angew Chem Int Ed 40:1760

    Article  CAS  Google Scholar 

  35. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R (2000) J Chem Soc Dalton Trans 3907

    Google Scholar 

  36. Caneschi A, Gatteschi D, Lalioti N, Sessoli R, Sorace L, Tangoulis V, Vindigni A (2002) Chem Eur J 8:286

    Article  CAS  Google Scholar 

  37. Bogani L, Sessoli R, Pini MG, Rettori A, Novak MA, Rosa P, Massi M, Fedi ME, Giuntini L, Caneschi A, Gatteschi D (2005) Phys Rev B 72:064406

    Article  CAS  Google Scholar 

  38. Bogani L, Caneschi A, Fedi ME, Gatteschi D, Massi M, Novak MA, Pini MG, Rettori A, Sessoli R, Vindigni A (2004) Phys Rev Lett 92:207204-1

    Article  CAS  Google Scholar 

  39. Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini MG, Novak MA (2002) Europhys Lett 58:771

    Article  CAS  Google Scholar 

  40. Vindigni A, Regnault N, Jolicoeur Th (2004) Phys Rev B 70:134423

    Article  CAS  Google Scholar 

  41. Roland L, Simonet V, Wernsdorfer W, Bogani L, Sessoli R (2004) J Mag Mag Mater 272–276:1079

    Article  CAS  Google Scholar 

  42. Lascialfari A, Micotti E, Aldrovandi S, Caneschi A, Gatteschi D (2003) J Appl Phys 93:8749

    Article  CAS  Google Scholar 

  43. Micotti E, Lascialfari A, Rigamonti A, Aldrovandi S, Caneschi A, Gatteschi D, Bogani L (2004) J Mag Mag Mater 272–276:1087

    Article  CAS  Google Scholar 

  44. Vindigni A, Bogani L, Gatteschi D, Sessoli R, Rettori A, Novak MA (2004) J Mag Mag Mater 272–276:297

    Article  CAS  Google Scholar 

  45. Miyasaka H, Clérac R, Mizushima K, Sugiura K, Yamashita M, Wernsdorfer W, Coulon C (2003) Inorg Chem 42:8203

    Article  CAS  Google Scholar 

  46. Miyasaka H, Nezu T, Sugimoto K, Sugiura K, Yamashita M, Clérac R (2005) Chem Eur J 11:1592

    Article  CAS  Google Scholar 

  47. Miyasaka H, Clérac R (2005) Bull Chem Soc Jpn 78:1725

    Article  CAS  Google Scholar 

  48. Ferbinteanu M, Miyasaka H, Wernsdorfer W, Nakata K, Sugiura K, Yamashita M, Coulon C, Clérac R (2005) J Am Chem Soc 127:3090

    Article  CAS  Google Scholar 

  49. Choi HJ, Sokol JJ, Long JR (2004) Inorg Chem 43:1606

    Article  CAS  Google Scholar 

  50. Miyasaka H, Matsumoto N, Okawa H, Re N, Gallo E, Floriani C (1995) Angew Chem Int Ed 34:1446

    Article  CAS  Google Scholar 

  51. Miyasaka H, Matsumoto N, Okawa H, Re N, Gallo E, Floriani C (1996) J Am Chem Soc 118:981

    Article  CAS  Google Scholar 

  52. Miyasaka H, Matsumoto N, Re N, Gallo E, Floriani C (1997) Inorg Chem 36:670

    Article  CAS  Google Scholar 

  53. Miyasaka H, Ieda H, Matsumoto N, Re N, Crescenzi R, Floriani C (1998) Inorg Chem 37:25

    Google Scholar 

  54. Miyasaka H, Okawa H, Miyazaki A, Enoki T (1998) J Chem Soc Dalton Trans 3991

    Google Scholar 

  55. Miyasaka H, Okawa H, Miyazaki A, Enoki T (1998) Inorg Chem 37:4878

    Article  CAS  Google Scholar 

  56. Miyasaka H, Ieda H, Matsumoto N, Sugiura K, Yamashita M (2003) Inorg Chem 42:3509

    Article  CAS  Google Scholar 

  57. Clemente-León M, Coronado E, Galán-Mascarós JR, Gómez-García CJ, Woike T, Clemente-Juan JM (2001) Inorg Chem 40:87

    Article  CAS  Google Scholar 

  58. Przychodzén P, Lewinski K, Balanda M, Pelka R, Rams M, Wasiutynski T, Guyard-Duhayon C, Sieklucka B (2004) Inorg Chem 43:2967

    Article  CAS  Google Scholar 

  59. Liu T, Fu D, Gao S, Zhang Y, Sun H, Su G, Liu Y (2003) J Am Chem Soc 125:13976

    Article  CAS  Google Scholar 

  60. Shaikh N, Panja A, Goswami S, Banerjee P, Vojtisek P, Zhang Y-Z, Su G, Gao S (2004) Inorg Chem 43:849

    Article  CAS  Google Scholar 

  61. Chakov NE, Wernsdorfer W, Abboud KA, Christou G (2004) Inorg Chem 43:5919

    Article  CAS  Google Scholar 

  62. Chang F, Gao S, Sun HL, Hou YL, Su G (2002) Proceeding of the ICSM 2002 Conference (June 29–July 5th 2002), Fudan University, Shanghai, China, p 182

    Google Scholar 

  63. Lescouëzec R, Vaissermann J, Ruiz-Pérez C, Lloret F, Carrasco R, Julve M, Verdaguer M, Dromzee Y, Gatteschi D, Wernsdorfer W (2003) Angew Chem Int Ed 42:1483

    Article  CAS  Google Scholar 

  64. Toma LM, Delgado FS, Ruiz-Pérez C, Carrasco R, Cano J, Lloret F, Julve M (2004) Dalton Trans 2836

    Google Scholar 

  65. Wang S, Zuo JL, Gao S, Song Y, Zhou HC, Zhang YZ, You XZ (2004) J Am Chem Soc 126:8900

    Article  CAS  Google Scholar 

  66. Toma LM, Lescouëzec R, Lloret F, Julve M, Vaissermann J, Verdaguer M (2003) Chem Commun 1850

    Google Scholar 

  67. Pardo E, Ruiz-Garcia R, Lloret F, Faus J, Julve M, Journaux Y, Delgado F, Ruiz-Perez C (2004) Adv Mater 16:1597

    Article  CAS  Google Scholar 

  68. Kajiwara T, Nakano M, Kaneko Y, Takaishi S, Ito T, Yamashita M, Igashira-Kamiyama A, Nojiri H, Ono Y, Kojima N (2005) J Am Chem Soc 127:10150

    Article  CAS  Google Scholar 

  69. Kamiyama A, Noguchi T, Kajiwara T, Ito T (2000) Angew Chem Int Ed 39:3130

    Article  CAS  Google Scholar 

  70. Kamiyama A, Noguchi T, Kajiwara T, Ito T (2002) Inorg Chem 41:507

    Article  CAS  Google Scholar 

  71. Kamiyama A, Noguchi T, Kajiwara T, Ito T (2003) Cryst Eng Commun 5:231

    CAS  Google Scholar 

  72. Kajiwara T, Sensui R, Noguchi T, Kamiyama A, Ito T (2002) Inorg Chim Acta 337:299

    Article  CAS  Google Scholar 

  73. Kajiwara T, Ito T (1999) Mol Cryst Liq Cryst 335:73

    Article  Google Scholar 

  74. Costes JP, Clemente-Juan JM, Dahan F, Milon J (2004) Inorg Chem 43:8200

    Article  CAS  Google Scholar 

  75. Bogani L, Sangregorio C, Sessoli R, Gatteschi D (2005) Angew Chem Int Ed 44:5817

    Article  CAS  Google Scholar 

  76. Benelli C, Caneschi A, Gatteschi D, Sessoli R (1992) Adv Mater 4:504

    Article  CAS  Google Scholar 

  77. Benelli C, Caneschi A, Gatteschi D, Sessoli R (1993) Inorg Chem 32:4797

    Article  CAS  Google Scholar 

  78. Benelli C, Caneschi A, Gatteschi D, Sessoli R (1993) J Appl Phys 73:5333

    Article  CAS  Google Scholar 

  79. Benelli C, Caneschi A, Gatteschi D, Pardi L, Rey P (1990) Inorg Chem 29:4223

    Article  CAS  Google Scholar 

  80. Sun Z-M, Prosvirin AV, Zhao H-H, Mao J-G, Dunbar KR (2005) J Appl Phys 97:10B305

    Google Scholar 

  81. Coronado E, Drillon M, Nugteren PR, de Jongh LJ, Beltran D (1988) J Am Chem Soc 110:3907

    Article  CAS  Google Scholar 

  82. Lecren L, Roubeau O, Coulon C, Li Y-G, Le Goff X, Wernsdorfer W, Miyasaka H, Clérac R (2005) J Am Chem Soc 127:17353

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge E. Bonet (LLN, Grenoble, France), F. Nallet (CRPP, Pessac, France), S.S.P. Parkin (IBM, Almaden Research Center, San Jose, USA), A. Vindigni (ETH, Zurich, Switzerland) and W. Wernsdorfer (LLN, Grenoble, France) for their fruitful collaboration and the hours of helpful and passionate discussions. The authors also thank our students and post-docs at TMU and CRPP for their everyday hard work but also for their curiosity, enthusiasm and ability on this project, which have emphasized our motivation and creativity. This work was supported by PRESTO and CREST projects, Japan Science and Technology Agency, Grant-in-Aid from the Ministry of Education, Culture, Sports, Science, and Technology (Japan), the CNRS, the University of Bordeaux 1 and the Conseil Régional d'Aquitaine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolphe Clérac .

Editor information

Richard Winpenny

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Coulon, C., Miyasaka, H., Clérac, R. Single-Chain Magnets:Theoretical Approach and Experimental Systems. In: Winpenny, R. (eds) Single-Molecule Magnets and Related Phenomena. Structure and Bonding, vol 122. Springer, Berlin, Heidelberg. https://doi.org/10.1007/430_030

Download citation

Publish with us

Policies and ethics