Skip to main content
Log in

Microwave-Assisted Synthesis, Structure and Properties of a Nano-Double-Bowl-Like Heptanuclear Nickel(II) Cluster

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A nano-double-bowl-like heptanuclear nickel cluster [Ni7(mmp)6(OH)6]2·(ClO4)2·12H2O (1, Hmmp is 2-methoxy-6-methyliminomethyl-phenol) has been synthesized through the microwave-assisted reaction of Ni(ClO4)2·6H2O with 2-hydroxy-3-methoxy-benzaldehyde (Hhmb) and methylamine in distilled water only 29 min. The core of the complex 1 can be described as a double-bowl-like, while the dodecanuclear water cluster stands on the bowl. The magnetic investigation shows that 1 displays very weak ferromagnetic coupling between NiII ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Lozan, C. Loose, J. Kortus, and B. Kersting (2009). Coord. Chem. Rev. 253, 2244.

    Article  CAS  Google Scholar 

  2. C. R. Maldonado, L. Salassa, N. Gomez-Blanco, and J. C. Mareque-Rivas (2013). Coord. Chem. Rev. 257, 2668.

    Article  CAS  Google Scholar 

  3. R. X. Yao, X. Xu, and X. M. Zhang (2012). Chem. Mater. 24, 303.

    Article  CAS  Google Scholar 

  4. J. A. Sheikh, A. Adhikary, H. S. Jena, S. Biswas, and S. Konar (2014). Inorg. Chem. 53, 1606.

    Article  CAS  Google Scholar 

  5. S. Hara, H. Houjou, I. Yoshikawa, and K. Araki (2011). Cryst. Growth & Des. 11, 5113.

    Article  CAS  Google Scholar 

  6. G. Malandrino, L. M. S. Perdicaro, I. L. Fragalà, R. L. Nigro, M. Losurdo, and G. Bruno (2007). J. Phys. Chem. C. 111, 3211.

    Article  CAS  Google Scholar 

  7. O. Belda and C. Moberg (2005). Coord. Chem. Rev. 249, 727.

    Article  CAS  Google Scholar 

  8. B. Shafaatian, A. Soleymanpour, N. K. Oskouei, B. Notash, and S. A. Rezvani (2014). Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 128, 363.

    Article  CAS  Google Scholar 

  9. Y. Xiao, Y. Hu, S. H. Zhang, B. Zhang, X. Y. Peng, and Z. Q. Li (2011). Synth. React. Inorg. Met.-Org. Chem. 41, 1203.

    Article  CAS  Google Scholar 

  10. Y. J. Xu, S. Matsunaga, and M. Shibasaki (2010). Org. Lett. 12, 3246.

    Article  CAS  Google Scholar 

  11. D. Yakhvarov, E. Trofimova, O. Sinyashin, O. Kataeva, Y. Budnikova, P. Lönnecke, E. Hey-Hawkins, A. Petr, Y. Krupskaya, V. Kataev, R. Klingeler, and B. Büchner (2011). Inorg. Chem. 50, 4553.

    Article  CAS  Google Scholar 

  12. J. F. Berry, F. A. Cotton, L. M. Daniels, and C. A. Murillo (2002). J. Am. Chem. Soc. 124, 3212.

    Article  CAS  Google Scholar 

  13. Y. Xiao, S. H. Zhang, G. Z. Li, Y. G. Wang, and C. Feng (2011). Inorg. Chim. Acta 366, 39.

    Article  CAS  Google Scholar 

  14. S. H. Zhang, M. F. Tang, and C. M. Ge (2009). Z. Anorg. Allg. Chem. 635, 1442.

    Article  CAS  Google Scholar 

  15. A. Bilyk, J. W. Dunlop, R. O. Fuller, A. K. Hall, J. M. Harrowfield, M. W. Hosseini, G. A. Koutsantonis, I. W. Murray, B. K. Skelton, R. L. Stamps, and A. H. White (2010). Eur. J. Inorg. Chem. 2010, 2106.

    Article  Google Scholar 

  16. L. Yang, S. H. Zhang, W. Wang, J. J. Guo, Q. P. Huang, R. X. Zhao, C. L. Zhang, and G. Muller (2014). Polyhedron 74, 49.

    Article  CAS  Google Scholar 

  17. B. Hussain, D. Savard, T. J. Burchell, W. Wernsdorfer, and M. Murugesu (2009). Chem. Commun. 9, 1100.

    Article  Google Scholar 

  18. S. H. Zhang, Y. D. Zhang, H. H. Zou, J. J. Guo, H. P. Li, Y. Song, and H. Liang (2013). Inorg. Chim. Acta 396, 119.

    Article  CAS  Google Scholar 

  19. S. K. Ghosh and P. K. Bharadwaj (2003). Inorg. Chem. 42, 8250.

    Article  CAS  Google Scholar 

  20. S. M. Anikumari, V. Shivaiah, and S. K. Das (2002). Inorg. Chem. 41, 6953.

    Article  Google Scholar 

  21. J. N. Moorthy, R. Natarajan, and P. Venugopalan (2002). Angew. Chem. Int. Ed. 41, 3417.

    Article  CAS  Google Scholar 

  22. R. Ludwig (2000). Chem. Phys. Chem. 1, 53.

    CAS  Google Scholar 

  23. J. M. Ugalde, I. Alkorta, and J. Elguero (2000). Angew. Chem. Int. Ed. 39, 717.

    Article  CAS  Google Scholar 

  24. S. K. Ghosh and P. K. Bharadwaj (2004). Inorg. Chem. 43, 5180.

    Article  CAS  Google Scholar 

  25. S. Neogi and P. K. Bharadwaj (2005). Inorg. Chem. 44, 816.

    Article  CAS  Google Scholar 

  26. L. E. Cheruzel, M. S. Pometun, M. R. Cecil, M. S. Mashuta, R. J. Wittebort, and R. M. Buchanan (2003). Angew. Chem. Int. Ed. 42, 5452.

    Article  CAS  Google Scholar 

  27. S. K. Ghosh, J. Ribas, M. S. E. Fallah, and P. K. Bharadwaj (2005). Inorg. Chem. 44, 3856.

    Article  CAS  Google Scholar 

  28. B. H. Ye, B. B. Ding, Y. Q. Weng, and X. M. Chen (2004). Inorg. Chem. 43, 6866.

    Article  CAS  Google Scholar 

  29. J. P. Zhang, Y. Y. Lin, X. C. Huang, and X. M. Chen (2005). Inorg. Chem. 44, 3146.

    Article  CAS  Google Scholar 

  30. X. Z. Feng, S. H. Zhang, Z. Liu, G. Z. Li, and L. X. Jin (2007). Acta Cryst. E63, m529.

    Google Scholar 

  31. K. Raghuraman, K. K. Katti, L. J. Barbour, N. Pillarsetty, C. L. Barnes, and K. V. Katti (2003). J. Am. Chem. Soc. 125, 6955.

    Article  CAS  Google Scholar 

  32. E. Taijkhorshid, P. Nollert, M. Jensen, L. J. W. Miercke, J. O. Connell, R. M. Stroud, and K. Schulten (2002). Nature 296, 525.

    Google Scholar 

  33. G. M. Sheldrick (2008). Acta Cryst. A64, 112.

    Article  Google Scholar 

  34. Y. Z. Zhang, W. Wernsdorfer, F. Pan, Z. M. Wang, and S. Gao (2006). Chem. Commun. 31, 3302.

    Article  Google Scholar 

  35. M. Moragues-Canovás, C. E. Talbot-Eeckelaers, L. Catala, F. Lloret, W. Wernsdorfer, E. K. Brechin, and T. Mallah (2006). Inorg. Chem. 45, 7038.

    Article  Google Scholar 

  36. T. D. Keene, M. B. Hursthouse, and D. J. Price (2004). New J. Chem. 28, 558.

    Article  CAS  Google Scholar 

  37. L. Yang, Q. P. Huang, C. L. Zhang, R. X. Zhao, and S. H. Zhang (2014). Supramol. Chem. 24, 81.

    Article  Google Scholar 

  38. W. Wang, H. Hai, S. H. Zhang, L. Yang, C. L. Zhang, and X. Y. Qin (2014). J. Clust. Sci. 25, 357.

    Article  CAS  Google Scholar 

  39. S. H. Zhang and C. Feng (2010). J. Mol. Struct. 977, 62.

    Article  CAS  Google Scholar 

  40. C. J. Gruenloh, J. R. Carney, C. A. Arrington, T. S. Zwier, S. Y. Fredericks, and K. D. Jordan (1997). Science 276, 1678.

    Article  CAS  Google Scholar 

  41. P. H. Warnet, D. Nordlund, U. Bergmann, M. Cavalleri, M. Odelius, H. Ogasawara, L. A. Näslund, T. K. Hirsch, L. Ojamäe, P. Glatzel, L. G. M. Pettersson, and A. Nilsson (2004). Science 304, 995.

    Article  Google Scholar 

  42. D. Eisenberg and W. Kauzmann The structure and properties of water (Oxford University Press, Oxford, 1969).

    Google Scholar 

  43. S. H. Zhang, Y. Song, H. Liang, and M. H. Zeng (2009). Cryst. Eng. Comm. 11, 865.

    Article  Google Scholar 

  44. L. Macalik, J. Hanuza, K. Hermanowicz, W. Oganowski, and H. Ban-Oganowska (2000). J. Alloys Comp. 300–301, 377.

    Article  Google Scholar 

  45. J. Hetmańczyk, Ł. Hetmańczyk, A. Migdał-Mikuli, E. Mikuli, and I. Natkaniec (2011). J. Alloys Comp. 509, 6545.

    Article  Google Scholar 

  46. M. Moragues-Cánovas, M. Helliwell, L. Ricard, E. Rivière, W. Wernsdorfer, E. K. Brechin, and T. Mallah (2004). Eur. J. Inorg. Chem. 11, 2219.

    Article  Google Scholar 

  47. C. Cadiou, M. Murrie, C. Paulsen, V. Villar, W. Wernsdorfer, and R. E. P. Winpenny (2001). Chem. Commun. 128, 2666.

    Article  Google Scholar 

  48. A. Bell, G. Aromí, S. J. Teat, W. Wernsdorfer, and R. E. P. Winpenny (2005). Chem. Commun 22, 2808.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Nature Science Foundation of China (No. 21161006) and Program for Excellent Talents in Guangxi Higher Education Institutions(Gui Jiao Ren [2012]41).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu Hua Zhang or Mei Chun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Q.P., Zhang, S.H., Zhang, H.Y. et al. Microwave-Assisted Synthesis, Structure and Properties of a Nano-Double-Bowl-Like Heptanuclear Nickel(II) Cluster. J Clust Sci 25, 1489–1499 (2014). https://doi.org/10.1007/s10876-014-0725-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-014-0725-1

Keywords

Navigation