Skip to main content
Log in

Sonoemulsion Synthesis of Long CuO Nanorods with Enhanced Catalytic Thermal Decomposition of Potassium Perchlorate

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

A facile sonoemulsion route using suitable non-ionic surfactant, polyethylene glycol with molecular weight of 8000 (PEG8000) was developed to synthesize long CuO nanorods with average diameter of 15–20 nm and lengths up to 1.5 μm. The as-developed CuO nanorods were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, SAED and Raman spectroscopy. The Raman spectrum of as-synthesized nanorods was found to be red-shifted and broadened due to possible consequence of phonon confinement, electron–LO–phonon-coupling and internal compressive stresses. The dynamics of nanorod growth was elaborated in context of size aggregation effect fueled by ultra-sonication and steric hindrance effect imposed by PEG8000. The catalytic activity of CuO nanorods in thermal decomposition of potassium perchlorate was examined by thermogravimetric analysis technique. The CuO nanorods prepared by sonoemulsion route was found to be very effective in thermal decomposition of potassium perchlorate with significant reduction in thermal decomposition temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C. N. R. Rao, S. R. C. Vivekchand, K. Biswas, and A. Govindaraj (2007). Dalton Trans. 34, 3728.

    Article  Google Scholar 

  2. J. B. Reitz and E. I. Solomon (1998). J. Am. Chem. Soc. 120, 11467.

    Article  CAS  Google Scholar 

  3. M. Frietsch, F. Zudock, J. Goschnick, and M. Bruns (2000). Sens. Actuators B 65, 379.

    Article  CAS  Google Scholar 

  4. J. Chen, S. Deng, N. Xu, W. Zhang, X. Wen, and S. Yang (2003). Appl. Phys. Lett. 83, 746.

    Article  CAS  Google Scholar 

  5. X. P. Gao, J. L. Bao, G. L. Pan, H. Y. Zhu, P. X. Huang, F. Wu, and D. Y. Song (2004). J. Phys. Chem. B 108, 5547.

    Article  CAS  Google Scholar 

  6. S. Valliappan, J. Swiatkiewicz, and J. A. Puszynski (2005). Powder Technol. 156, 164.

    Article  CAS  Google Scholar 

  7. T. Maruyama (1998). Sol. Energy Mater. Sol. Cells 56, 85.

    Article  CAS  Google Scholar 

  8. L. Chen, L. Li, and G. Li (2008). J. Alloys Compd. 464, 532.

    Article  CAS  Google Scholar 

  9. J. Wang, S. He, Z. Li, X. Jing, M. Zhang, and Z. Jiang (2009). Colloid Polym. Sci. 287, 853.

    Article  CAS  Google Scholar 

  10. C. Wu, K. Sullivan, S. Chowdhury, G. Jian, L. Zhou, and M. R. Zachariah (2011). Adv. Funct. Mater. 22, 78.

    Article  CAS  Google Scholar 

  11. W. K. Rudloff and E. S. Freeman (1970). J. Phys. Chem. 74, 3317.

    Article  CAS  Google Scholar 

  12. R. Furuichi, T. Ishii, and K. Kobayashi (1974). J. Therm. Anal. 6, 305.

    Article  CAS  Google Scholar 

  13. X. Jiang, T. Herricks, and Y. Xia (2002). Nano Lett. 2, 1333.

    Article  CAS  Google Scholar 

  14. P. Poizot, C. J. Hung, M. P. Nikiforov, E. W. Bohannan, and J. A. Switzer (2003). Electrochem. Solid-State Lett. 6, 21.

    Article  Google Scholar 

  15. L. Zhu, Y. Chen, Y. Zheng, N. Li, J. Zhao, and Y. Sun (2010). Mater. Lett. 64, 976.

    Article  CAS  Google Scholar 

  16. W. Wang, Y. Zhan, and G. Wang (2001). Chem. Commun. 13, 727.

    Article  Google Scholar 

  17. S. Lian, Z. Kang, E. Wang, M. Jiang, C. Hu, and L. Xu (2003). Solid State Commun. 127, 605.

    Article  CAS  Google Scholar 

  18. Z. Li, Y. Xiong, and Y. Xie (2003). Inorg. Chem. 42, 8105.

    Article  CAS  Google Scholar 

  19. D. Zhang, H. Fu, L. Shi, C. Pan, Q. Li, Y. Chu, and W. Yu (2007). Inorg. Chem. 46, 2446.

    Article  CAS  Google Scholar 

  20. R. P. Wang, G. W. Zhou, Y. L. Liu, S. H. Pan, H. Z. Zhang, and D. P. Yu (2000). Phys. Rev. B 61, 16827.

    Article  CAS  Google Scholar 

  21. G. Gouadec and P. Colomban (2007). Prog. Cryst. Growth Charact. Mater. 53, 1.

    Article  CAS  Google Scholar 

  22. J. C. Irwin, J. Ahrzanowski, T. Wei, D. J. Lockwood, and A. Wold (1990). Physica C 166, 456.

    Article  CAS  Google Scholar 

  23. J. W. Ager III, D. K. Veirs, and G. M. Rosenblatt (1991). Phys. Rev. B 43, 6491.

    Article  CAS  Google Scholar 

  24. R. P. Wang, G. Xu, and P. Jin (2004). Phys. Rev. B 69, 113303.

    Article  Google Scholar 

  25. E. J. H. Lee, C. Ribeiro, E. Longo, and E. R. Leite (2005). J. Phys. Chem. B 109, 20842.

    Article  CAS  Google Scholar 

  26. M. Nabavi, O. Spalla, and B. Cabane (1993). J. Colloid Interface Sci. 160, 459.

    Article  CAS  Google Scholar 

  27. S. J. Doktycz and K. S. Suslick (1990). Science 247, 1067.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We express our sincere thanks to Science Engineering and Research Council, Department of Science and Technology (DST), Government of India for its financial support and All India Council for Technical Education (AICTE), Government of India for its sponsored PhD programme for teachers of engineering institutions under Quality Improvement Programme (QIP). The author would also like to acknowledge, the Nanoscience Centre, Advanced Centre for Materials Science and Department of Materials Science and Engineering of IIT Kanpur for providing good material characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Kumar Patel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, V.K. Sonoemulsion Synthesis of Long CuO Nanorods with Enhanced Catalytic Thermal Decomposition of Potassium Perchlorate. J Clust Sci 24, 821–828 (2013). https://doi.org/10.1007/s10876-013-0579-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0579-y

Keywords

Navigation