Skip to main content
Log in

Thermal investigation of nanospheres and nanowhiskers of CuInS2

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nanospheres and nanowhiskers of ternary CuInS2 are synthesized by sonochemical and hydrothermal techniques, respectively. The energy dispersive X-rays showed the samples to be stoichiometric. The tetragonal unit cell structure of synthesized samples is characterized by X-ray diffraction. The corresponding morphology of the synthesized samples is studied by electron microscopy in scanning and transmission modes. The thermal investigation of the synthesized nanospheres and nanowhiskers is carried out by recording thermogravimetric (TG) and differential thermal analysis (DTA) curves. These simultaneous thermocurves are recorded in temperature range of ambient to 1253 K in an inert nitrogen atmosphere for three heating rates of 10, 15 and 20 K·min−1. The thermal study showed nanospheres to decompose by five steps and nanowhiskers to decompose in a single step. The kinetic parameters like activation energy, phonon frequency factor, activation enthalpy, activation entropy and Gibbs free energy change are determined for both samples. The kinetic parameters are evaluated from the thermocurves data using model-free isoconversion methods like Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO) and Friedman (FR). All the obtained outcomes are investigated in details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Li, W. Li, W. Li, M. Chen, R. Snyders, C. Bittencourt, Z. Yuan, Engineering crystal phase of polytypic CuInS2nanosheets for enhanced photocatalytic and photoelectrochemical performance. Nano Res. 13, 583–590 (2020). https://doi.org/10.1007/s12274-020-2665-4

    Article  Google Scholar 

  2. A. Anand, M.L. Zaffalon, G. Gariano, A. Camellini, M. Gandini, R. Brescia, C. Capitani, F. Bruni, V. Pinchetti, M. Zavelani-Rossi, F. Meinardi, S.A. Crooker, S. Brovelli, Evidence for the band-edge exciton of CuInS2nanocrystals enables record efficient large-area luminescent solar concentrators. Adv. Funct. Mater. 30, 1906629 (2020). https://doi.org/10.1002/adfm.201906629

    Article  Google Scholar 

  3. W.-T. Huang, S.-Y. Yoon, B.-H. Wu, K.-M. Lu, C.-M. Lin, H. Yang, R.-S. Liu, Ultra-broadband near-infrared emission CuInS2/ZnS quantum dots with high power efficiency and stability for the theranostic applications of mini light-emitting diodes. Chem. Commun. 56, 8285–8288 (2020). https://doi.org/10.1039/D0CC03030A

    Article  Google Scholar 

  4. Z. Peng, Y. Liu, K. Chen, G. Yang, W. Chen, Fabrication of the protonated pentatitanatenanobelts sensitized with CuInS2 quantum dots for photovoltaic applications. Chem. Eng. J. 244, 335–342 (2014). https://doi.org/10.1016/j.cej.2014.01.053

    Article  Google Scholar 

  5. Y. Kim, H.S. Jang, H. Kim, S. Kim, D.Y. Jeon, Controlled synthesis of CuInS2/ZnSnanocubes and their sensitive photoluminescence response toward hydrogen peroxide. ACS Appl. Mater. Interfaces 9, 32097–32105 (2017). https://doi.org/10.1021/acsami.7b09388

    Article  Google Scholar 

  6. J. Li, B. Kempken, V. Dzhagan, D.R.T. Zahn, J. Grzelak, S. Mackowski, J. Parisi, J. Kolny-Olesiak, Alloyed CuInS2–ZnSnanorods: synthesis, structure and optical properties. CrystEngComm 17, 5634–5643 (2015). https://doi.org/10.1039/C5CE00380F

    Article  Google Scholar 

  7. J. Li, M. Bloemen, J. Parisi, J. Kolny-Olesiak, Role of copper sulfide seeds in the growth process of CuInS2nanorods and networks. ACS Appl. Mater. Interfaces 6, 20535–20543 (2014). https://doi.org/10.1021/am5061454

    Article  Google Scholar 

  8. B. Chen, S. Chang, D. Li, L. Chen, Y. Wang, T. Chen, B. Zou, H. Zhong, A.L. Rogach, Template synthesis of CuInS2nanocrystals from in2s3nanoplates and their application as counter electrodes in dye-sensitized solar cells. Chem. Mater. 27, 5949–5956 (2015). https://doi.org/10.1021/acs.chemmater.5b01971

    Article  Google Scholar 

  9. Q. Li, L. Zhai, C. Zou, X. Huang, L. Zhang, Y. Yang, X. Chen, S. Huang, Wurtzite CuInS2 and CuInxGa1−xS2nanoribbons: synthesis, optical and photoelectrical properties. Nanoscale 5, 1638–1648 (2013). https://doi.org/10.1039/C2NR33173J

    Article  ADS  Google Scholar 

  10. X. Tu, M. Li, Y. Su, G. Yin, J. Lu, D. He, Self-templated growth of CuInS2nanosheet arrays for photoelectrochemical water splitting. J. Alloys Compd. 809, 151794 (2019). https://doi.org/10.1016/j.jallcom.2019.151794

    Article  Google Scholar 

  11. M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Appl. Catal. B Environ. 203, 715–724 (2016). https://doi.org/10.1016/j.apcatb.2016.10.051

    Article  Google Scholar 

  12. Y. Luo, G. Chang, W. Lu, X. Sun, Synthesis and characterization of CuInS2nanoflowers. Colloid J. 72, 282–285 (2010). https://doi.org/10.1134/S1061933X10020201

    Article  Google Scholar 

  13. J.-J. Wu, W.-T. Jiang, W.-P. Liao, CuInS2 nanotube array on indium tin oxide: synthesis and photoelectrochemical properties. Chem. Commun. 46, 5885–5887 (2010). https://doi.org/10.1039/C0CC01314E

    Article  Google Scholar 

  14. H.M. Hu, C.H. Deng, Template-free synthesis of CuInS2 hollow nanospheres. Optoelectron. Mater. 663–665, 486–489 (2011)

    Google Scholar 

  15. M. Gromova, A. Lefrançois, L. Vaure, F. Agnese, D. Aldakov, A. Maurice, D. Djurado, C. Lebrun, A. de Geyer, T.U. Schülli, S. Pouget, P. Reiss, Growth mechanism and surface state of CuInS2nanocrystals synthesized with dodecanethiol. J. Am. Chem. Soc. 139, 15748–15759 (2017). https://doi.org/10.1021/jacs.7b07401

    Article  Google Scholar 

  16. A. Tang, Z. Hu, Z. Yin, H. Ye, C. Yang, F. Teng, One-pot synthesis of CuInS2nanocrystals using different anions to engineer their morphology and crystal phase. Dalton Trans. 44, 9251–9259 (2015). https://doi.org/10.1039/C5DT01111F

    Article  Google Scholar 

  17. L. Liu, H. Li, Z. Liu, Y.-H. Xie, Structure and band gap tunable CuInS2nanocrystal synthesized by hot-injection method with altering the dose of oleylamine. Mater. Des. 149, 145–152 (2018). https://doi.org/10.1016/j.matdes.2018.04.015

    Article  Google Scholar 

  18. H. Liu, X. Yang, K. Wang, Y. Wang, M. Wu, X. Zuo, W. Yang, B. Zou, Pressure-induced multidimensional assembly and sintering of CuInS2 nanoparticles into lamellar nanosheets with band gap narrowing. ACS Appl. Nano Mater. 3, 2438–2446 (2020). https://doi.org/10.1021/acsanm.9b02550

    Article  Google Scholar 

  19. B. Li, Y. Xie, J. Huang, Y. Qian, Synthesis by a solvothermal route and characterization of CuInSe2nanowhiskers and nanoparticles. Adv. Mater. 11, 1456–1459 (1999). https://doi.org/10.1002/(SICI)1521-4095(199912)11:17%3c1456::AID-ADMA1456%3e3.0.CO;2-3

    Article  Google Scholar 

  20. C. Sun, Z. Cevher, J. Zhang, B. Gao, K. Shum, Y. Ren, One-pot synthesis and characterization of chalcopyrite CuInS2 nanoparticles. J. Mater. Chem. A 2, 10629–10633 (2014). https://doi.org/10.1039/C4TA01062K

    Article  Google Scholar 

  21. Z.X. Chen, Y.Z. Ye, H.J. Huang, G.C. Xiao, Y.H. He, Hydrothermal synthesis of tetragonal phase CuInS2 nanoparticles. Adv. Mater. Res. 557–559, 489–492 (2012)

    Google Scholar 

  22. S.H. Chaki, A. Agarwal, Growth, surface microtopographic and thermal studies of CuInS2. J. Cryst. Growth 308, 176–179 (2007). https://doi.org/10.1016/j.jcrysgro.2007.07.031

    Article  ADS  Google Scholar 

  23. M.K. Agarwal, P.D. Patel, S.H. Chaki, D. Lakshminarayana, Growth and properties of CuInS2 thin films. Bull. Mater. Sci. 21, 291–295 (1998). https://doi.org/10.1007/BF02744955

    Article  Google Scholar 

  24. S.H. Chaki, Seebeck coefficient and optical studies of cadmium doped CuInS2 single crystal. Acta Phys. Pol. A 116, 221 (2009). https://doi.org/10.12693/APhysPolA.116.221

    Article  ADS  Google Scholar 

  25. S.H. Chaki, Thermal decomposition studies of CuInS2. Front. Mater. Sci. China 2, 322–325 (2008). https://doi.org/10.1007/s11706-008-0041-5

    Article  ADS  Google Scholar 

  26. Y. Li, Y. Wang, R. Tang, X. Wang, P. Zhu, X. Zhao, C. Gao, Structural phase transition and electrical transport properties of CuInS2nanocrystals under high pressure. J. Phys. Chem. C 119, 2963–2968 (2015). https://doi.org/10.1021/jp511684u

    Article  Google Scholar 

  27. B.-B. Xie, B.-B. Hu, L.-F. Jiang, G. Li, Z.-L. Du, The phase transformation of CuInS2 from chalcopyrite to wurtzite. Nanoscale Res. Lett. 10, 86 (2015). https://doi.org/10.1186/s11671-015-0800-z

    Article  ADS  Google Scholar 

  28. A.D.P. Leach, J.E. Macdonald, Optoelectronic properties of CuInS2nanocrystals and their origin. J. Phys. Chem. Lett. 7, 572–583 (2016). https://doi.org/10.1021/acs.jpclett.5b02211

    Article  Google Scholar 

  29. R. Klenk, J. Klaer, R. Scheer, M. Lux-Steiner, I. Luck, N. Meyer, U. Ruhle, Solar cells based on CuInS2—an overview. Thin Solid Films 480, 509–514 (2005). https://doi.org/10.1016/j.tsf.2004.11.042

    Article  ADS  Google Scholar 

  30. M. Dehghani, A. Behjat, F. Tajabadi, N. Taghavinia, Totally solution-processed CuInS2 solar cells based on chloride inks: reduced metastable phases and improved current density. J. Phys. D Appl. Phys. 48, 115304 (2015). https://doi.org/10.1088/0022-3727/48/11/115304

    Article  ADS  Google Scholar 

  31. B. Fu, C. Deng, L. Yang, Efficiency enhancement of solid-state CuInS2 quantum dot-sensitized solar cells by improving the charge recombination. Nanoscale Res. Lett. 14, 198 (2019). https://doi.org/10.1186/s11671-019-2998-7

    Article  ADS  Google Scholar 

  32. A.H. CheshmeKhavar, A.R. Mahjoub, F. Tajabadi, M. Dehghani, N. Taghavinia, Preparation of a CuInS2 nanoparticle Ink and application in a selenization-free, solution-processed superstrate solar cell. Eur. J. Inorg. Chem. 2015, 5793–5800 (2015). https://doi.org/10.1002/ejic.201500749

    Article  Google Scholar 

  33. R. Scheer, T. Walter, H.W. Schock, M.L. Fearheiley, H.J. Lewerenz, CuInS2 based thin film solar cell with 10.2% efficiency. Appl. Phys. Lett. 63, 3294–3296 (1993). https://doi.org/10.1063/1.110786

    Article  ADS  Google Scholar 

  34. D. Reishofer, T. Rath, H.M. Ehmann, C. Gspan, S. Dunst, H. Amenitsch, H. Plank, B. Alonso, E. Belamie, G. Trimmel, S. Spirk, Biobased cellulosic–CuInS2nanocomposites for optoelectronic applications. ACS Sustain. Chem. Eng. 5, 3115–3122 (2017). https://doi.org/10.1021/acssuschemeng.6b02871

    Article  Google Scholar 

  35. H. Li, X. Jiang, A. Wang, X. Chu, Z. Du, Simple synthesis of CuInS2/ZnS core/shell quantum dots for white light-emitting diodes. Front. Chem. 8, 669 (2020). https://doi.org/10.3389/fchem.2020.00669

    Article  ADS  Google Scholar 

  36. R. Jose Varghese, S. Parani, O.O. Adeyemi, V.R. Remya, E.H.M. Sakho, R. Maluleke, S. Thomas, O.S. Oluwanfemi, Green synthesis of sodium alginate capped -CuInS2 quantum dots with improved fluorescence properties. J. Fluoresc. (2020). https://doi.org/10.1007/s10895-020-02604-0

    Article  Google Scholar 

  37. R. Maluleke, E.H.M. Sakho, O.S. Oluwafemi, Aqueous synthesis of glutathione-capped CuInS2/ZnS quantum dots-graphene oxide nanocomposite as fluorescence “switch OFF” for explosive detection. Mater. Lett. 269, 127669 (2020). https://doi.org/10.1016/j.matlet.2020.127669

    Article  Google Scholar 

  38. M. Heydari, M. Rahman, R. Gupta, Kinetic study and thermal decomposition behavior of lignite coal. Int. J. Chem. Eng. 2015, 481739 (2015). https://doi.org/10.1155/2015/481739

    Article  Google Scholar 

  39. N. Kongkaew, W. Pruksakit, S. Patumsawad, Thermogravimetric kinetic analysis of the pyrolysis of rice straw. Energy Proc. 79, 663–670 (2015). https://doi.org/10.1016/j.egypro.2015.11.552

    Article  Google Scholar 

  40. M. Li, R. Zhao, Y. Su, J. Hu, Z. Yang, Y. Zhang, Hierarchically CuInS2nanosheet-constructed nanowire arrays for photoelectrochemical water splitting. Adv. Mater. Interfaces 3, 1600494 (2016). https://doi.org/10.1002/admi.201600494

    Article  Google Scholar 

  41. M. Mousavi-Kamazani, M. Salavati-Niasari, H. Emadi, Synthesis and characterization of CuInS2 nanostructure by ultrasonic-assisted method and different precursors. Mater. Res. Bull. 47, 3983–3990 (2012). https://doi.org/10.1016/j.materresbull.2012.08.044

    Article  Google Scholar 

  42. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939). https://doi.org/10.1103/PhysRev.56.978

    Article  ADS  MATH  Google Scholar 

  43. B. Wunderlich, Thermal Analysis, Elsevier Science, 2012. https://books.google.co.in/books?id=A7S-BOAiLg8C.

  44. R.M. Flynn, J.H. Flynn, T.J. Bent, Comparison of temperature response within and between power compensated and differential temperature DSC instruments. Thermochim. Acta. 134, 401–406 (1988). https://doi.org/10.1016/0040-6031(88)85267-5

    Article  Google Scholar 

  45. S.R. Sauerbrunn, B.S. Crowe, M. Reading, in 21st Proceedinds NATAS Conference in Atlanta, GA, Sept. 13–16. M. Reading, B. K. Hahn B. S. Crowe, US Pat. 5. 224, 775, 137–144 (1992)

  46. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957). https://doi.org/10.1021/ac60131a045

    Article  Google Scholar 

  47. T. Akahira, Trans joint convention of four electrical institutes. Res. Rep. Chiba Inst. Technol. 16, 22–31 (1971)

    Google Scholar 

  48. A.W. Coats, J.P. Redfern, Kinetic parameters from thermogravimetric data. Nature 201, 68–69 (1964). https://doi.org/10.1038/201068a0

    Article  ADS  Google Scholar 

  49. J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part B Polym. Lett. 4, 323–328 (1966). https://doi.org/10.1002/pol.1966.110040504

    Article  Google Scholar 

  50. T. Ozawa, A new method of analyzingthermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881–1886 (1965). https://doi.org/10.1246/bcsj.38.1881

    Article  Google Scholar 

  51. H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6, 183–195 (1964). https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  52. T. Ozawa, Estimation of activation energy by isoconversion methods. Thermochim. Acta 203, 159–165 (1992). https://doi.org/10.1016/0040-6031(92)85192-X

    Article  Google Scholar 

  53. M. Muzayyin, S. Sukarni, R. Wulandari, Investigation on kinetic and thermodynamic parameters of Cerberamanghas de-oiled seed as renewable energy during the pyrolysis process. AIP Conf. Proc. 2228, 30012 (2020). https://doi.org/10.1063/5.0000900

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors, RKG is thankful to the Education Department, Govt. of Gujarat, India for providing Research Fellowship under SHODH (ScHeme Of Developing High quality research, Grant No. 201901640031) to carry out the research work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ranjan Kr. Giri or Sunil H. Chaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, R.K., Chaki, S.H., Khimani, A.J. et al. Thermal investigation of nanospheres and nanowhiskers of CuInS2. Eur. Phys. J. Plus 136, 320 (2021). https://doi.org/10.1140/epjp/s13360-021-01241-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01241-1

Navigation