Skip to main content
Log in

Self-assembled CuO nanoarchitectures and their catalytic activity in the thermal decomposition of ammonium perchlorate

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

CuO shuttle-like and flower-like nanocrystals were synthesized through a one-step, low-temperature solution-phase method in the presence of a cation surfactant, hexadecyl trimethyl ammonium bromide. These nanocrystals were studied as an additive for promoting the thermal decomposition of ammonium perchlorate (AP). With the addition of CuO shuttle-like and flower-like nanocrystals, the thermal decomposition temperature of AP decreased. The structure, particle size, and morphology of resulting CuO powders were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Thermogravimetric analysis technique was applied to investigate the thermal decomposition of mixtures of AP and as-prepared CuO nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Laxmidhar R, Suribabu JTP (2007) Novel CuO nanoparticle catalyzed C–N cross coupling of amines with iodobenzene. Org Lett 17:3396–3399

    Google Scholar 

  2. Zhang MY, Wang LF, Ji HB et al (2007) Cumene liquid oxidation to cumene hydroperoxide over CuO nanoparticle with molecular oxygen under mild condition. J Nat Gas Chem 16:393–398

    Article  CAS  Google Scholar 

  3. Li XG, Ma BG, Xu L et al (2007) Catalytic effect of metallic oxides on combustion behavior of high ash coal. Energy Fuels 21:2669–2672

    Article  CAS  Google Scholar 

  4. Zhang JT, Liu JF, Peng Q et al (2006) Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors. Chem Mater 18:867–871

    Article  CAS  Google Scholar 

  5. Sambandam A, Wen XG, Yang SH (2005) Room temperature growth of CuO nanorod arrays on copper and their application as a cathode in dye-sensitized solar cells. Mater Chem Phys 93:35–40

    Article  Google Scholar 

  6. Seiichi S, Shogo M, Sinya S et al (2008) Photoelectrochemical characteristics of cells with dyed and undyed nanoporous p-type semiconductor CuO electrodes. J Photochem Photobiol, A Chem 194:143–147

    Article  Google Scholar 

  7. Wang SQ, Zhang JY, Chen CH (2007) Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scripta Mater 57:337–340

    Article  CAS  Google Scholar 

  8. Gao XP, Bao JL, Pan GL et al (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B 108:5547–5551

    Article  CAS  Google Scholar 

  9. Tang KJ, Wang XF, Yan WF et al (2006) Fabrication of superhydrophilic Cu2O and CuO membranes. J Membr Sci 286:279–284

    Article  CAS  Google Scholar 

  10. Jarlborg T (2007) Effects of spin–phonon interaction within the CuO plane of high-TC superconductors. Physical C 454:5–14

    Article  CAS  Google Scholar 

  11. Chang Y, Zeng HC (2004) Controlled synthesis and self-assembly of single-crystalline CuO nanorods and nanoribbons. Cryst Growth Des 4:397–402

    Article  CAS  Google Scholar 

  12. Xiao HM, Zhu LP, Liu XM et al (2007) Anomalous ferromagnetic behavior of CuO nanorods synthesized via hydrothermal method. Solid State Commun 141:431–435

    Article  CAS  Google Scholar 

  13. Du GH, Van Tendeloo G (2004) Cu(OH)2 nanowires, CuO nanowires and CuO nanobelts. Chem Phys Lett 393:64–69

    Article  CAS  Google Scholar 

  14. Fan XY, Wu ZG, Yan PX et al (2008) Fabrication of well-ordered CuO nanowire arrays by direct oxidation of sputter-deposited Cu3N film. Mater Lett 62:1805–1808

    Article  CAS  Google Scholar 

  15. Wang WZ, Zhuang Y, Li L (2008) Structure and size effect of CuO nanowires prepared by low temperature solid-phase process. Mater Lett 62:1724–1726

    Article  CAS  Google Scholar 

  16. Wang XQ, Xi GC, Xiong SL et al (2007) Solution-phase synthesis of single-crystal CuO nanoribbons and nanorings. Cryst Growth Des 7:930–934

    Article  CAS  Google Scholar 

  17. Liu XW, Geng BY, Du QB et al (2007) Temperature-controlled self-assembled synthesis of CuO, Cu2O and Cu nanoparticles through a single-precursor route. Mater Sci Eng 448:7–14

    Article  Google Scholar 

  18. Zou GF, Li H, Zhang DW et al (2006) Well-aligned arrays of CuO nanoplatelets. J Phys Chem B 110:1632–1637

    Article  CAS  Google Scholar 

  19. Liu YL, Liao L, Li JC et al (2007) From copper nanocrystalline to CuO nanoneedle array: synthesis, growth mechanism, and properties. J Phys Chem C 111:5050–5056

    Article  CAS  Google Scholar 

  20. Al-Kuhaili MF (2008) Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum 82:623–629

    Article  CAS  Google Scholar 

  21. Zheng LK, Liu XJ (2007) Solution-phase synthesis of CuO hierarchical nanosheets at near-neutral pH and near-room temperature. Mater Lett 61:2222–2226

    Article  CAS  Google Scholar 

  22. Zhu JW, Bi HP, Wang YP et al (2007) Synthesis of flower-like CuO nanostructures via a simple hydrolysis route. Mater Lett 61:5236–5238

    Article  CAS  Google Scholar 

  23. Liu B, Zeng HC (2004) Mesoscale organization of CuO nanoribbons: formation of “Dandelions”. J Am Chem Soc 126:8124–8125

    Article  CAS  Google Scholar 

  24. Zhang M, Xu XD, Zhang ML (2008) Hydrothermal synthesis of sheaf-like CuO via ionic liquids. Mater Lett 62:385–388

    Article  CAS  Google Scholar 

  25. Liu Y, Chu Y, Zhuo YJ et al (2007) Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils. Cryst Growth Des 7:467–470

    Article  CAS  Google Scholar 

  26. Zhang H, Li SZ, Ma XY et al (2008) Controllable growth of dendrite-like CuO nanostructures by ethylene glycol assisted hydrothermal process. Mater Res Bull 43:1291–1296

    Article  CAS  Google Scholar 

  27. Cao AM, Monnell JD, Matranga C et al (2007) Hierarchical nanostructured copper oxide and its application in arsenic removal. J Phys Chem C 11:18624–18628

    Article  Google Scholar 

  28. Yuan GQ, Jiang HF, Lin C et al (2007) Shape- and size-controlled electrochemical synthesis of cupric oxide nanocrystals. J Cryst Growth 303:400–406

    Article  CAS  Google Scholar 

  29. Zhang YG, Wang ST, Li XB et al (2006) CuO shuttle-like nanocrystals synthesized by oriented attachment. J Cryst Growth 291:196–201

    Article  CAS  Google Scholar 

  30. Li D, Leung YH, Djurišić AB et al (2005) CuO nanostructures prepared by a chemical method. J Cryst Growth 282:105–111

    Article  CAS  Google Scholar 

  31. Zhang ZP, Sun HP, Shao XQ et al (2005) Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures. Adv Mater 17:42–47

    Article  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge the support of this research by the Key Technology R&D program of Heilongjiang Province (no.TB06A05), Science Fund for Young Scholar of Harbin City (no. 2004AFQXJ038), and basic research fund for Harbin Engineering University (no. mzj07076).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, J., He, S., Li, Z. et al. Self-assembled CuO nanoarchitectures and their catalytic activity in the thermal decomposition of ammonium perchlorate. Colloid Polym Sci 287, 853–858 (2009). https://doi.org/10.1007/s00396-009-2040-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-009-2040-1

Keywords

Navigation