Skip to main content
Log in

Solid Phase Supported “Click”-Chemistry Approach for the Preparation of Water Soluble Gold Nanoparticle Dimers

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

We investigated the potential of the Cu(I) catalyzed azide-alkyne cycloaddition between water soluble azide and alkyne functionalized gold nanoparticles in terms of dimer formation via a solid phase support. Alkyne and azide lipoic acid derivatives are prepared and utilized as stabilizing ligands for 15 nm gold colloids. For the solid phase supported click reaction first citrate stabilized gold nanoparticles are immobilized on amine terminated silicon wafers. In the following step the citrate ligands of the upper free accessible nanoparticle surface are exchanged against a mixture of the alkyne derivative of lipoic acid and lipoic acid. Upon addition of lipoic acid/lipoic acid azide derivative stabilized 15 nm gold nanoparticles and the Cu(I) catalyst solution covalent interparticle coupling between immobilized and gold nanoparticles added is achieved. The formed structures are analyzed by scanning electron microscopy directly on the solid support. It is demonstrated that the yield of dimeric structures on the solid phase support increases with increased molar ratio of the catalyst, thus indicating that dimers are indeed formed by covalent bond formation. Upon treatment with ultrasound the formed structures could be released and detected with transmission electron microscopy measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Shenhar and V. M. Rotello (2003). Acc. Chem. Res. 36, 549–561.

    Article  CAS  Google Scholar 

  2. G. Schmid, Nanoparticles, 2nd edn. (Wiley, Weinheim, 2003).

  3. E. Locatelli, G. Ori, M. Fournelle, R. Lemor, M. Montorsi, and M. C. Franchini (2011). Chem. Eur. J. 17, (33), 9052–9056.

    Article  CAS  Google Scholar 

  4. M. Homberger and U. Simon (2010). Philos. Trans. A 368, 1405–1453.

    Article  CAS  Google Scholar 

  5. M.-C. Daniel and D. Astruc (2004). Chem. Rev. 104, 293–346.

    Article  CAS  Google Scholar 

  6. E. Boisselier and D. Astruc (2009). Chem. Soc. Rev. 38, 1759–1782.

    Article  CAS  Google Scholar 

  7. N. L. Rosi and C. A. Mirkin (2005). Chem. Rev. 105, 1547–1562.

    Article  CAS  Google Scholar 

  8. T. -J. Yim, Y. Wang, X. Zhang (2008). Nanotechnology 19, 435605.

  9. M. G. Blaber and G. C. Schatz (2011). Chem. Commun. 47, 3769–3771.

    Article  CAS  Google Scholar 

  10. P. Alessio, C. J. L. Constantino, R. F. Aroca, O. N. Oliveira Jr. (2010). J. Chil. Chem. Soc. 55(4), 469.

    Google Scholar 

  11. J. P. Novak and D. L. Feldheim (2000). J. Am. Chem. Soc. 122, (16), 3979–3980.

    Article  CAS  Google Scholar 

  12. J. P. Hermes, F. Sander, T. Peterle, C. Cioffi, P. Ringler, T. Pfohl, and M. Mayor (2011). Small 7, (7), 920–929.

    Article  CAS  Google Scholar 

  13. B. Dong, B. Li, and C. Y. Li (2011). J. Mater. Chem. 21, 13155–13158.

    Article  CAS  Google Scholar 

  14. R. Sardar, T. B. Heap, J. S. Shumaker-Parry (2007). J. Am. Chem. Soc. 129(17), 5356–5357 .

    Google Scholar 

  15. J. S. Shumaker-Parry, R. Sardar, patent application number: 20090256116, publication date: 10/15/2009.

  16. R. Huisgen (1961). Proc. Chem. Soc. 357–396.

  17. H. C. Kolb, M. G. Finn, and K. Barry Sharpless (2001). Angew. Chem. Int. Ed. 40, (11), 2004–2021.

    Article  CAS  Google Scholar 

  18. W. H. Binder, L. Petraru, R. Sachenshofer, and R. Zirbs (2006). Monatsh. Chem. 137, 835–841.

    Article  CAS  Google Scholar 

  19. J. L. Brennan, N. S. Hatzakis, T. R. Tshikhudo, N. Dirvianskyite, V. Razumas, S. Patkar, J. Vind, A. Svendsen, R. J. M. Nolte, A. E. Rowan, and M. Brust (2006). Bioconjugate Chem. 17, 1373–1375.

    Article  CAS  Google Scholar 

  20. R. Voggu, P. Suguna, S. Chandrasekaran, and C. N. R. Rao (2007). Chem. Phys. Lett. 443, 118–121.

    Article  CAS  Google Scholar 

  21. N. Lia and W. H. Binder (2011). J. Mater. Chem.. doi:10.1039/C1JM11558H.

    Google Scholar 

  22. M. Fischler and U. Simon (2009). J. Mater. Chem. 19(11), 1518–1523.

    Article  CAS  Google Scholar 

  23. M. Fischler, U. Simon, H. Nir, Y. Eichen, E. A. Burley, J. Gierlich, P. M. E. Gramlich, and T. Carell (2007). Small 3, (6), 1049–1055.

    Article  CAS  Google Scholar 

  24. J. Turkevich, P. C. Stevenson, and J. J. Hillier (1953). Phys. Chem. 57, 670–673.

    Article  CAS  Google Scholar 

  25. J. M. Abad, S. F. L. Mertens, M. Pita, V. M. Fernández, and D. J. Schiffrin (2005). J. Am. Chem. Soc. 127, 5689–5694.

    Article  CAS  Google Scholar 

  26. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. Barry Sharpless (2002). Angew. Chem. 114(14), 2708–2711.

    Article  Google Scholar 

  27. V. V. Rostovtsev, L. G. Green, V. V. Fokin, and K. Barry Sharpless (2002). Angew. Chem. Int. Ed. 41(14), 2596–2599.

    Article  CAS  Google Scholar 

  28. S. Berchmans, P. John Thomas, and C. N. R. Rao (2002). J. Phys. Chem. B 106, 4647–4651.

    Article  CAS  Google Scholar 

  29. S. Gilles, C. Kaulen, M. Pabst, U. Simon, A. Offenhäusser, and D. Mayer (2011). Nanotechnology 22, 295301.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Excellence Initiative of the German federal and state government and by the Jülich Aachen Research Alliance (JARA). We thank Dr. Corinna Kaulen for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Homberger.

Additional information

JARA - Fundamentals of Future Information Technology (FIT)

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3034 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Homberger, M., Schmid, S., Timper, J. et al. Solid Phase Supported “Click”-Chemistry Approach for the Preparation of Water Soluble Gold Nanoparticle Dimers. J Clust Sci 23, 1049–1059 (2012). https://doi.org/10.1007/s10876-012-0494-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0494-7

Keywords

Navigation