Skip to main content
Log in

Metal and Metal Oxide Nanostructures Prepared by Electrical Arc Discharge Method in Liquids

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this review, the importance of electrical arc discharge technique in liquids in synthesis of various nanostructures from carbon based materials to metal and metal oxide nanostructures with their general and specific properties, especially the photocatalytic performance of metal oxide nanostructures is studied. The effect of arc current on size distribution, morphology and physicochemical properties of metal and semiconductor nanostructures was investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS) and UV–Vis spectroscopy. WO3 Cubic nanostructures with 30 nm mean particle size were formed during the discharge process in water. Discharge between zinc electrodes in water leads to formation of rod like and semi spherical ZnO nanostructures with 15–20 nm diameter range. ZrO2 nanoparticles were formed using zirconium electrodes in water. Photodegradation of Rhodamine B (Rh. B) shows that the as prepared nanostructures in this method have potential ability for environmental purifications. Also, using silver electrodes in water leads to formation of silver nanoparticles with 8–15 nm average particle size. Moreover, a novel method for synthesis of gold nanoparticles without using gold electrodes is presented. Finally, the future outlook of this technique in synthesis of various nanocrystalline materials is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34

Similar content being viewed by others

References

  1. R. Gill, M. Zayats, and I. Willner (2008). Angew. Chem. Int. Ed. 47, 7602.

    Article  CAS  Google Scholar 

  2. E. Katz and I. Willner (2004). Angew. Chem. Int. Ed. 43, 6042.

    Article  CAS  Google Scholar 

  3. E. Katz, I. Willner, and J. Wang (2004). Electroanalysis 16, 19.

    Article  CAS  Google Scholar 

  4. C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed (2005). Chem. Rev. 105, 1025.

    Article  CAS  Google Scholar 

  5. S. Eustis and M. A. El-Sayed (2006). Chem. Soc. Rev. 35, 209.

    Article  CAS  Google Scholar 

  6. K. Fu, J. Sun, A. W. H. Lin, H. Wang, N. J. Halas, and R. A. Drezek (2007). Curr. Nanosci. 3, 167.

    Article  CAS  Google Scholar 

  7. M. Hu, J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia (2006). Chem. Soc. Rev. 35, 1084.

    Article  CAS  Google Scholar 

  8. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed (2008). Lasers Med. Sci. 23, 217.

    Article  Google Scholar 

  9. X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed (2007). Nanomedicine 2, 681.

    Article  CAS  Google Scholar 

  10. P. K. Jain, I. H. ElSayed, and M. A. El-Sayed (2007). Nano Today 2, 18.

    Article  Google Scholar 

  11. S. Link and M. A. El-Sayed (2003). Annu. Rev. Phys. Chem. 54, 331.

    Article  CAS  Google Scholar 

  12. X. Lu, M. Rycenga, S. E. Skrabalak, B. Wiley, and Y. Xia (2009). Annu. Rev. Phys. Chem. 60, 167.

    Article  CAS  Google Scholar 

  13. S. E. Skrabalak, L. Au, X. Lu, X. Li, and Y. Xia (2007). Nanomedicine 2, 657.

    Article  CAS  Google Scholar 

  14. Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak (2009). Angew. Chem. Int. Ed. 48, 60.

    Article  CAS  Google Scholar 

  15. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen (2010). Adv. Drug Deliv. Rev. 62, 1094.

    Article  CAS  Google Scholar 

  16. M. Mahmoudi, M. A. Shokrgozar, A. Simchi, M. Imani, A. S. Milani, P. Stroeve, H. Vali, U. O. Hafeli, and S. Bonakdar (2009). J. Phys. Chem. C 113, 2322.

    Article  CAS  Google Scholar 

  17. M. Mahmoudi, M. A. Shokrgozar, A. Simchi, M. Imani, A. S. Milani, P. Stroeve, H. Vali, U. O. Hafeli, and S. Bonakdar (2009). J. Phys. Chem. C 113, 17274.

    Article  CAS  Google Scholar 

  18. M. Mahmoudi, A. Simchi, and M. Imani (2009). J. Phys. Chem. C 113, 9573.

    Article  CAS  Google Scholar 

  19. M. Mahmoudi, A. Simchi, M. Imani, and U. O. Hafeli (2009). J. Phys. Chem. C 113, 8124.

    Article  CAS  Google Scholar 

  20. M. Mahmoudi, A. Simchi, M. Imani, A. S. Milani, and P. Stroeve (2008). J. Phys. Chem. B 112, 14470.

    Article  CAS  Google Scholar 

  21. M. Mahmoudi, A. Simchi, M. Imani, A. S. Milani, and P. Stroeve (2009). Nanotechnology 20, 225104.

    Article  CAS  Google Scholar 

  22. M. Mahmoudi, A. Simchi, M. Imani, M. A. Shokrgozar, A. S. Milani, U. O. Hafeli, and P. Stroeve (2010). Colloids Surf B 75, 300.

    Article  CAS  Google Scholar 

  23. M. Mahmoudi, A. Simchi, M. Imani, P. Stroeve, and A. Sohrabi (2010). Thin Solid Films 518, 4281.

    Article  CAS  Google Scholar 

  24. M. Mahmoudi, A. Simchi, A. S. Milani, and P. Stroeve (2009). J. Colloid Interface Sci. 336, 510.

    Article  CAS  Google Scholar 

  25. M. Mahmoudi, A. Simchi, H. Vali, M. Imani, M. A. Shokrgozar, K. Azadmanesh, and F. Azari (2009). Adv. Eng. Mater. 11, B243.

    Article  Google Scholar 

  26. M. Takeuchi, S. Sakai, A. Ebrahimi, M. Matsuoka, and M. Anpo (2009). Top. Catal. 52, 1651.

    Article  CAS  Google Scholar 

  27. M. Yan, F. Chen, J. Zhang, and M. Anpo (2005). J. Phys. Chem. B 109, 8673.

    Article  CAS  Google Scholar 

  28. A. A. Ashkarran and M. R. Mohammadizadeh (2007). Eur. Phys. J. Appl. Phys. 40, 155.

    Article  CAS  Google Scholar 

  29. A. A. Ashkarran and M. R. Mohammadizadeh (2008). Mater. Res. Bull. 43, 522.

    Article  CAS  Google Scholar 

  30. Y. Cong, J. Zhang, F. Chen, and M. Anpo (2007). J. Phys. Chem. C 111, 6976.

    Article  CAS  Google Scholar 

  31. P. V. Kamat and D. Meisel (2002). Curr. Opin. Colloid Interface Sci. 7, 282.

    Article  CAS  Google Scholar 

  32. M. Kitano, M. Matsuoka, M. Ueshima, and M. Anpo (2007). Appl. Catal. A 325, 1.

    Article  CAS  Google Scholar 

  33. M. Kitano, R. Mitsui, D. R. Eddy, Z. M. A. El-Bahy, M. Matsuoka, M. Ueshima, and M. Anpo (2007). Catal. Lett. 119, 217.

    Article  CAS  Google Scholar 

  34. M. Terashima, N. Inoue, S. Kashiwabara, and R. Fujimoto (2001). Appl. Surf. Sci. 169–170, 535.

    Article  Google Scholar 

  35. J. H. Yum, P. Chen, M. Grätzel, and M. K. Nazeeruddin (2008). ChemSusChem 1, 699.

    Article  CAS  Google Scholar 

  36. J. Zhao and X. Yang (2003). Build. Environ. 38, 645.

    Article  Google Scholar 

  37. S. Iijima (1991). Nature 354, 56.

    Article  CAS  Google Scholar 

  38. Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima (2001). Diam. Relat. Mater. 10, 1185.

    Article  CAS  Google Scholar 

  39. Y. Ando, X. Zhao, S. Inoue, and S. Iijima (2002). J. Cryst. Growth 237–239, 1926.

    Article  Google Scholar 

  40. Y. Ando, X. Zhao, H. Kataura, Y. Achiba, K. Kaneto, M. Tsuruta, S. Uemura, and S. Iijima (2000). Diam. Relat. Mater. 9, 847.

    Article  CAS  Google Scholar 

  41. Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, L. Zhou, K. T. Yue, and S. Zhang (1999). Carbon 37, 1449.

    Article  CAS  Google Scholar 

  42. H. Takikawa, Y. Tao, R. Miyano, T. Sakakibara, Y. Ando, X. Zhao, K. Hirahara, and S. Iijima (2001). Mater. Sci. Eng. C 16, 11.

    Article  Google Scholar 

  43. M. Takizawa, S. Bandow, M. Yudasaka, Y. Ando, H. Shimoyama, and S. Iijima (2000). Chem. Phys. Lett. 326, 351.

    Article  CAS  Google Scholar 

  44. T. Yamaguchi, S. Bandow, and S. Iijima (2004). Chem. Phys. Lett. 389, 181.

    Article  CAS  Google Scholar 

  45. Y. Zhang, S. Iijima, Z. Shi, and Z. Gu (1999). Philos. Mag. Lett. 79, 473.

    Article  CAS  Google Scholar 

  46. X. Zhao, M. Ohkohchi, M. Wang, S. Iijima, T. Ichihashi, and Y. Ando (1997). Carbon 35, 775.

    Article  CAS  Google Scholar 

  47. I. Alexandrou, N. Sano, A. Burrows, R. R. Meyer, H. Wang, A. I. Kirkland, C. J. Kiely, and G. A. J. Amaratunga (2003). Nanotechnology 14, 913.

    Article  CAS  Google Scholar 

  48. I. Alexandrou, H. Wang, N. Sano, and G. A. J. Amaratunga (2004). J. Chem. Phys. 120, 1055.

    Article  CAS  Google Scholar 

  49. M. Bystrzejewski, H. Lange, A. Huczko, M. Ruemmeli, T. Gemming, and T. Pichler (2006). Fullerenes Nanotubes Carbon Nanostruct. 14, 207.

    Article  CAS  Google Scholar 

  50. D. Delaportas, P. Svarnas, I. Alexandrou, A. Siokou, K. Black, and J. W. Bradley (2009). J. Phys. D 42, 245204.

    Article  CAS  Google Scholar 

  51. O. Kawanami, N. Sano, T. Miyamoto, A. Mineshige, T. Murakami, and H. Harima (2007). Appl. Phys. A 89, 929.

    Article  CAS  Google Scholar 

  52. H. Lange, M. Sioda, A. Huczko, Y. Q. Zhu, H. W. Kroto, and D. R. M. Walton (2003). Carbon 41, 1617.

    Article  CAS  Google Scholar 

  53. N. Sano (2005). Carbon 43, 450.

    Article  CAS  Google Scholar 

  54. N. Sano (2004). Chim. Oggi 22, 54.

    CAS  Google Scholar 

  55. N. Sano (2004). Mater. Chem. Phys. 88, 235.

    Article  CAS  Google Scholar 

  56. N. Sano, O. Kawanami, T. Charinpanitkul, and W. Tanthapanichakoon (2008). Thin Solid Films 516, 6694.

    Article  CAS  Google Scholar 

  57. N. Sano, M. Kinugasa, F. Otsuki, and J. Suehiro (2007). Adv. Powder Technol. 18, 455.

    Article  CAS  Google Scholar 

  58. N. Sano, M. Naito, M. Chhowalla, T. Kikuchi, S. Matsuda, K. Iimura, H. Wang, T. Kanki, and G. A. J. Amaratunga (2003). Chem. Phys. Lett. 378, 29.

    Article  CAS  Google Scholar 

  59. N. Sano, H. Wang, I. Alexandrou, M. Chhowalla, K. B. K. Teo, G. A. J. Amaratunga, and K. Iimura (2002). J. Appl. Phys. 92, 2783.

    Article  CAS  Google Scholar 

  60. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, G. A. J. Amaratunga, M. Naito, and T. Kanki (2003). Chem. Phys. Lett. 368, 331.

    Article  CAS  Google Scholar 

  61. N. Sano, H. Wang, M. Chhowalla, I. Alexandrou, and G. A. J. Amaratunga (2001). Nature 414, 506.

    Article  CAS  Google Scholar 

  62. C. G. Salzmann, V. Nicolosi, and M. L. H. Green (2010). J. Mater. Chem. 20, 314.

    Article  CAS  Google Scholar 

  63. D. Bera, S. C. Kuiry, M. McCutchen, S. Seal, H. Heinrich, and G. C. Slane (2004). J. Appl. Phys. 96, 5152.

    Article  CAS  Google Scholar 

  64. J. Guo, X. Wang, and B. Xu (2009). Mater. Chem. Phys. 113, 179.

    Article  CAS  Google Scholar 

  65. H. Wang, M. Chhowalla, N. Sano, S. Jia, and G. A. J. Amaratunga (2004). Nanotechnology 15, 546.

    Article  CAS  Google Scholar 

  66. W. T. Yao, S. H. Yu, Y. Zhou, J. Jiang, Q. S. Wu, and L. Zhang (2005). J. Phys. Chem. B 109, 14011.

    Article  CAS  Google Scholar 

  67. A. A. Ashkarran (2010). Curr. Appl. Phys. 10, 1442.

    Article  Google Scholar 

  68. A. A. Ashkarran, A. Iraji Zad, M. M. Ahadian, and M. R. Hormozi Nezhad (2009). Eur. Phys. J. Appl. Phys. 48, 10601.

    Article  CAS  Google Scholar 

  69. D. C. Tien, K. H. Tseng, C. Y. Liao, J. C. Huang, and T. T. Tsung (2008). J. Alloys Compd. 463, 408.

    Article  CAS  Google Scholar 

  70. A. A. Ashkarran, A. Iraji Zad, S. M. Mahdavi, M. M. Ahadian, and M. R. Hormozi nezhad (2009). Appl. Phys. A 96, 423.

    Article  CAS  Google Scholar 

  71. J. K. Lung, J. C. Huang, D. C. Tien, C. Y. Liao, K. H. Tseng, T. T. Tsung, W. S. Kao, T. H. Tsai, C. S. Jwo, H. M. Lin, and L. Stobinski (2007). J. Alloys Compd. 434–435, 655.

    Article  CAS  Google Scholar 

  72. A. A. Ashkarran, A. Iraji Zad, M. M. Ahadian, and S. A. Mahdavi Ardakani (2008). Nanotechnology 19, 195709.

    Article  CAS  Google Scholar 

  73. A. A. Ashkarran, S. A. A. Afshar, S. M. Aghigh, and M. kavianipour (2010). Polyhedron 29, 1370.

    Article  CAS  Google Scholar 

  74. A. A. Ashkarran, S. M. Aghigh, S. A. A. Afshar, and M. kavianipour (2011). Synth. React. Inorg. Met. Org. Chem. (in press).

  75. A. A. Ashkarran, A. Iraji Zad, S. M. Mahdavi, and M. M. Ahadian (2009). Mater. Chem. Phys. 118, 6.

    Article  CAS  Google Scholar 

  76. A. A. Ashkarran, A. Iraji Zad, S. M. Mahdavi, and M. M. Ahadian (2010). Appl. Phys. A 100, 1097.

    Article  CAS  Google Scholar 

  77. A. A. Ashkarran, M. Kavianipour, S. M. Aghigh, S. A. Ahmadi Afshar, S. Saviz, and A. Iraji Zad (2010). J. Clust. Sci. 21, 753.

    Article  CAS  Google Scholar 

  78. C. H. Lo, T. T. Tsung, and H. M. Lin (2007). J. Alloys Compd. 434–435, 659.

    Article  CAS  Google Scholar 

  79. D. C. Tien, C. Y. Liao, J. C. Huang, K. H. Tseng, J. K. Lung, T. T. Tsung, W. S. Kao, T. H. Tsai, T. W. Cheng, B. S. Yu, H. M. Lin, and L. Stobinski (2008). Rev. Adv. Mater. Sci. 18, 752.

    CAS  Google Scholar 

  80. D. Delaportas, P. Svarnas, and I. Alexandrou (2010). J. Electrochem. Soc. 157, K138.

    Article  CAS  Google Scholar 

  81. N. Parkansky, L. Glikman, I. I. Beilis, B. Alterkop, R. L. Boxman, and D. Gindin (2007). Plasma Chem. Plasma Process 27, 789.

    Article  CAS  Google Scholar 

  82. N. Parkansky, G. Frenkel, B. Alterkop, I. Beilis, R. L. Boxman, Z. Barkay, and Y. Rosenberg (2008). J. Alloys Compd. 464, 483.

    Article  CAS  Google Scholar 

  83. S. M. Liu, M. Kobayashi, S. Sato, and K. Kimura (2005). Chem. Commun. 37, 4690.

    Article  CAS  Google Scholar 

  84. A. Anders (2007). J. Phys. D 40, 2272.

    Article  CAS  Google Scholar 

  85. A. Anders (2006). Thin Solid Films 502, 22.

    Article  CAS  Google Scholar 

  86. E. Gidalevich and R. L. Boxman (2006). J. Phys. D 39, 652.

    Article  CAS  Google Scholar 

  87. E. Gidalevich and R. L. Boxman (2006). Plasma Sources Sci. Technol. 15, 765.

    Article  CAS  Google Scholar 

  88. E. Gidalevich, R. L. Boxman, and S. Goldsmith (2004). J. Phys. D 37, 1509.

    Article  CAS  Google Scholar 

  89. S. F. Abdullah, S. Radiman, M. A. Abd. Hamid, and N. B. Ibrahim (2006). Colloids Surf. A 280, 88.

    Article  CAS  Google Scholar 

  90. J. Liang, X. Jiang, G. Liu, Z. Deng, J. Zhuang, F. Li, and Y. Li (2003). Mater. Res. Bull. 38, 161.

    Article  CAS  Google Scholar 

  91. F. Xu, P. Zhang, A. Navrotsky, Z. Y. Yuan, T. Z. Ren, M. Halasa, and B. L. Su (2007). Chem. Mater. 19, 5680.

    Article  CAS  Google Scholar 

  92. A. P. Shpak, A. M. Korduban, M. M. Medvedskij, and V. O. Kandyba (2007). J. Electron. Spectrosc. Relat. Phenom. 156–158, 172.

    Article  CAS  Google Scholar 

  93. T. G. G. Maffeis, D. Yung, L. LePennec, M. W. Penny, R. J. Cobley, E. Comini, G. Sberveglieri, and S. P. Wilks (2007). Surf. Sci. 601, 4953.

    Article  CAS  Google Scholar 

  94. M. Kurumada, O. Kido, T. Sato, H. Suzuki, Y. Kimura, K. Kamitsuji, Y. Saito, and C. Taito (2005). J. Cryst. Growth 273, 1673.

    Article  CAS  Google Scholar 

  95. Z. L. Wang (2004). J. Phys. 16, R829.

    CAS  Google Scholar 

  96. M. F. Hoyaux Arc Physics (Springer, Berlin, 1968).

    Google Scholar 

  97. S. Y. Chai, Y. J. Kim, and W. I. Lee (2006). J. Electroceram. 17, 909.

    Article  CAS  Google Scholar 

  98. X. Jiang, Q. Zeng, and A. Yu (2006). Nanotechnology 17, 4929.

    Article  CAS  Google Scholar 

  99. W. Zhang, X. Qiao, and J. Chen (2008). Mater. Chem. Phys. 109, 411.

    Article  CAS  Google Scholar 

  100. A. A. Ashkarran, S. M. Aghigh, M. kavianipour, and N. J. Farahani (2011). Curr. Appl Phys. (in press).

  101. A. Anders, S. Anders, and M. A. Gundersen (1994). J. Appl. Phys. 76, 1494.

    Article  CAS  Google Scholar 

  102. A. Anders, S. Anders, B. Juttner, W. Botticher, H. Luck, and G. Schroder (1992). IEEE Trans. Plasma Sci. 20, 466.

    Article  CAS  Google Scholar 

  103. S. Anders, A. Anders, and I. Brown (1993). J. Appl. Phys. 74, 4239.

    Article  CAS  Google Scholar 

  104. S. Anders, A. Anders, K. M. Yu, X. Y. Yao, and I. G. Brown (1993). IEEE Trans. Plasma Sci. 21, 440.

    Article  CAS  Google Scholar 

  105. K. H. Tseng, J. C. Huang, C. Y. Liao, D. C. Tien, and T. T. Tsung (2009). J. Alloys Compd. 472, 446.

    Article  CAS  Google Scholar 

  106. N. R. Jana, L. Gearheart, and C. J. Murphy (2001). Chem. Mater. 13, 2313.

    Article  CAS  Google Scholar 

  107. A. Gole and C. J. Murphy (2004). Chem. Mater. 16, 3633.

    Article  CAS  Google Scholar 

  108. R. Sanedrin, D. Georganopoulou, S. Park, and C. Mirkin (2005). Adv. Mater. 17, 1027.

    Article  CAS  Google Scholar 

  109. T. K. Sau and C. J. Murphy (2004). Langmuir 20, 6414.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Plasma Physics Research Center, Science and Research Branch, Islamic Azad University. Author would like to express his special thanks to Prof. A. Iraji Zad for her help and useful discussions. Author would also like to thank Dr. S. M. Mahdavi, Dr. M. M. Ahadian and Dr. M. R. Hormozi Nezhad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ashkarran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashkarran, A.A. Metal and Metal Oxide Nanostructures Prepared by Electrical Arc Discharge Method in Liquids. J Clust Sci 22, 233–266 (2011). https://doi.org/10.1007/s10876-011-0376-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-011-0376-4

Keywords

Navigation