Skip to main content
Log in

Competition Between Thiol and Phosphine Ligands During the Synthesis of Au Nanoclusters

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Reduction of a mixture of Ph3PAuCl and CH3(CH2)5SH with NaBH4 yields predominately phosphine encapsulated nanoclusters with Au cores <1 nm, similar to the product isolated when the alkane thiol is not present in the reaction. When Et3N is added to a solution of Ph3PAuCl and CH3(CH2)5SH, a Au–S bond is formed, and the subsequent reduction of this thiolate results in the formation of >2 nm core thiol encapsulated Au nanoclusters as the majority product. This latter reduction has been examined in more detail through in situ 31P NMR experiments, and a solution exchange reaction is observed wherein the PPh3 generated by the reduction displaces thiol from the surface of the nanocluster product. This thiol displacement occurs with loss of a Au atom from the nanocluster core, as observed by NMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Scheme 4
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 5
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. The small shift in position of the Ph3PO signal is believed to be due to its interaction with one of the components of the reaction mixture. When the samples were isolated and run locked in CDCl3, this signal returned to 29 δ.

  2. See supporting information.

  3. Ph3P oxidizes slowly on standing in air in CDCl3 solvent to form Ph3PO, however control experiments indicate this process alone cannot account for the amount of Ph3PO seen in Fig. 8.

References

  1. J. Park, J. Joo, S. G. Kwon, Y. Jang, and T. Hyeon (2007). Angew. Chem. Int. Ed. 46, 4630.

    Article  CAS  Google Scholar 

  2. S. Guo and E. Wang (2007). Anal. Chim. Acta 598, 181.

    Article  CAS  Google Scholar 

  3. G. Schmid Nanoparticles: From Theory to Application (Wiley-VCH, Weinheim, 2004).

    Google Scholar 

  4. M. C. Daniel and D. Astruc (2004). Chem. Rev. 104, 293.

    Article  CAS  Google Scholar 

  5. M. Brust and C. J. Kiely (2002). Colloid Surf. A 202, 175.

    Article  CAS  Google Scholar 

  6. G. Schmid and L. F. Chi (1998). Adv. Mater. 10, 515.

    Article  CAS  Google Scholar 

  7. G. Schön and U. Simon (1995). Colloid Polym. Sci. 273, 202.

    Article  Google Scholar 

  8. G. Schön and U. Simon (1995). Colloid Polym. Sci. 273, 101.

    Article  Google Scholar 

  9. A. W. Snow and H. Wohltjen (1998). Chem. Mater. 10, 947.

    Article  CAS  Google Scholar 

  10. M. J. Hostetler, J. E. Wingate, C. J. Zhong, J. E. Harris, R. W. Vachet, M. R. Clark, J. D. Londono, S. J. Green, J. J. Stokes, G. D. Wignall, G. L. Glish, M. D. Porter, N. D. Evans, and R. W. Murray (1998). Langmuir. 14, 17.

    Article  CAS  Google Scholar 

  11. R. L. Whetten, J. T. Khoury, M. M. Alvaraz, S. Murthy, I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland, W. D. Luedtke, and U. Landman (1996). Adv. Mater. 8, 428.

    Article  CAS  Google Scholar 

  12. D. V. Leff, P. C. Ohara, J. R. Heath, and W. M. Gelbart (1995). J. Phys. Chem. 99, 7036.

    Article  CAS  Google Scholar 

  13. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman (1994). J. Chem. Soc. Chem. Comm. 801.

  14. M. K. Corbierre and R. B. Lennox (2005). Chem. Mater. 17, 5691.

    Article  CAS  Google Scholar 

  15. P. A. Bartlett, B. Bauer, and S. J. Singer (1978). J. Am. Chem. Soc. 100, 5085.

    Article  CAS  Google Scholar 

  16. P. Bellon, M. Manassero, and M. Sansoni (1972). J. Chem. Soc. Dalton. Trans. 1481.

  17. M. McPartlin and R. Mason (1969). Chem. Commun. 334.

  18. L. Malatesta, L. Naldini, G. Simonetta, and F. Cariati (1966). Coord. Chem. Rev. 1, 255.

    Article  CAS  Google Scholar 

  19. G. Schmid, R. Pfeil, R. Boese, F. Bandermann, S. Meyer, G. H. M. Calis, and J. W. A. van der Velden (1981). Chem. Ber. 114, 3634.

    Article  CAS  Google Scholar 

  20. G. H. Woehrle and J. E. Hutchison (2005). Inorg. Chem. 44, 6149.

    Article  CAS  Google Scholar 

  21. G. H. Woehrle, M. G. Warner, and J. E. Hutchison (2002). J. Phys. Chem. B 106, 9979.

    Article  CAS  Google Scholar 

  22. M. I. Bruce, B. K. Nicholson, and O. B. Shawkataly (1989). Inorg. Synth. 26, 324.

    Article  CAS  Google Scholar 

  23. A. W. Snow, M. G. Ancona, W. Kruppa, G. G. Jernigan, E. E. Foos, and D. Park (2002). J. Mater. Chem. 12, 1222.

    Article  CAS  Google Scholar 

  24. Y. Shichibu, Y. Negishi, T. Watanabe, N. K. Chaki, H. Kawaguchi, and T. Tsukuda (2007). J. Phys. Chem. C 111, 7845.

    Article  CAS  Google Scholar 

  25. K. Nobusada and I. Iwasa (2007). J. Phys. Chem. C 111, 14279.

    Article  CAS  Google Scholar 

  26. G. H. Woehrle, L. O. Brown, and J. E. Hutchison (2005). J. Am. Chem. Soc. 127, 2172.

    Article  CAS  Google Scholar 

  27. E. Delgado and E. Hernandez (1992). Polyhedron. 11, 3135.

    Article  CAS  Google Scholar 

  28. C. Kowala and J. M. Swan (1966). Aust. J. Chem. 19, 547.

    CAS  Google Scholar 

  29. E. C. Alyea, J. Malito, S. Attar, and J. H. Nelson (1992). Polyhedron. 11, 2409.

    Article  CAS  Google Scholar 

  30. S. Al-Baker, W. E. Hill, and C. A. McAuliffe (1986). J. Chem. Soc. Dalton Trans. 1297.

  31. Colburn CB, Hill WE, McAuliffe CA, and Parish RV (1979) J. Chem. Soc. Chem. Commun. 218.

  32. W. Wang and R. W. Murray (2005). Langmuir. 21, 7015.

    Article  CAS  Google Scholar 

  33. M. W. Heaven, A. Dass, P. S. White, K. M. Holt, and R. W. Murray (2008). J. Am. Chem. Soc. 130, 3754.

    Article  CAS  Google Scholar 

  34. P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, and R. D. Kornberg (2007). Science. 318, 430.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The Office of Naval Research (ONR) is acknowledged for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward E. Foos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 432 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foos, E.E., Twigg, M.E., Snow, A.W. et al. Competition Between Thiol and Phosphine Ligands During the Synthesis of Au Nanoclusters. J Clust Sci 19, 573–589 (2008). https://doi.org/10.1007/s10876-008-0205-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-008-0205-6

Keywords

Navigation