Skip to main content

Advertisement

Log in

Filaggrin-Associated Atopic Skin, Eye, Airways, and Gut Disease, Modifying the Presentation of X-Linked Reticular Pigmentary Disorder (XLPDR)

  • Original Article
  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Background

X-linked reticular pigmentary disorder (XLPDR) is a rare condition characterized by skin hyperpigmentation, ectodermal features, multiorgan inflammation, and recurrent infections. All probands identified to date share the same intronic hemizygous POLA1 hypomorphic variant (NM_001330360.2(POLA1):c.1393-354A > G) on the X chromosome. Previous studies have supported excessive type 1 interferon (IFN) inflammation and natural killer (NK) cell dysfunction in disease pathogenesis. Common null polymorphisms in filaggrin (FLG) gene underlie ichthyosis vulgaris and atopic predisposition.

Case

A 9-year-old boy born to non-consanguineous parents developed eczema with reticular skin hyperpigmentation in early infancy. He suffered recurrent chest infections with chronic cough, clubbing, and asthma, moderate allergic rhinoconjunctivitis with keratitis, multiple food allergies, and vomiting with growth failure. Imaging demonstrated bronchiectasis, while gastroscopy identified chronic eosinophilic gastroduodenitis. Interestingly, growth failure and bronchiectasis improved over time without specific treatment.

Methods

Whole-genome sequencing (WGS) using Illumina short-read sequencing was followed by both manual and orthogonal automated bioinformatic analyses for single-nucleotide variants, small insertions/deletions (indels), and larger copy number variations. NK cell cytotoxic function was assessed using 51Cr release and degranulation assays. The presence of an interferon signature was investigated using a panel of six interferon-stimulated genes (ISGs) by QPCR.

Results

WGS identified a de novo hemizygous intronic variant in POLA1 (NM_001330360.2(POLA1):c.1393-354A > G) giving a diagnosis of XLPDR, as well as a heterozygous nonsense FLG variant (NM_002016.2(FLG):c.441del, NP_0020.1:p.(Arg151Glyfs*43)). Compared to healthy controls, the IFN signature was elevated although the degree moderated over time with the improvement in his chest disease. NK cell functional studies showed normal cytotoxicity and degranulation.

Conclusion

This patient had multiple atopic manifestations affecting eye, skin, chest, and gut, complicating the presentation of XLPDR. This highlights that common FLG polymorphisms should always be considered when assessing genotype–phenotype correlations of other genetic variation in patients with atopic symptoms. Additionally, while the patient exhibited an enhanced IFN signature, he does not have an NK cell defect, suggesting this may not be a constant feature of XLPDR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Partington MW, Marriott PJ, Prentice RS, Cavaglia A, Simpson NE. Familial cutaneous amyloidosis with systemic manifestations in males. Am J Med Genet. 1981;10(1):65–75.

    Article  CAS  PubMed  Google Scholar 

  2. Adès LC, Rogers M, Sillence DO. An X-linked reticulate pigmentary disorder with systemic manifestations: report of a second family. Pediatr Dermatol. 1993;10(4):344–51.

    Article  PubMed  Google Scholar 

  3. Anderson RC, Zinn AR, Kim J, Carder KR. X-linked reticulate pigmentary disorder with systemic manifestations: report of a third family and literature review. Pediatr Dermatol. 2005;22(2):122–6.

    Article  PubMed  Google Scholar 

  4. Fernandez-Guarino M, Torrelo A, Fernandez-Lorente M, Fraile G, García-Sagredo JM, Jaén P. X-linked reticulate pigmentary disorder: report of a new family. Eur J Dermatol. 2008;18(1):102–3.

    PubMed  Google Scholar 

  5. Mégarbané H, Boehm N, Chouery E, Bernard R, Salem N, Halaby E, et al. X-linked reticulate pigmentary layer. Report of a new patient and demonstration of a skewed X-inactivation. Genet Couns. 2005;16(1):85–9.

    PubMed  Google Scholar 

  6. Pezzani L, Brena M, Callea M, Colombi M, Tadini G. X-linked reticulate pigmentary disorder with systemic manifestations: a new family and review of the literature. Am J Med Genet A. 2013;161a(6):1414–20.

    Article  PubMed  Google Scholar 

  7. Zhao YK, Fan LH, Lu JF, Luo ZY, Lin ZM, Wang HJ, et al. X-linked reticulate pigmentary disorder in a 4-year-old boy. Postepy Dermatol Alergol. 2022;39(2):410–2.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Légeret C, Meyer BJ, Rovina A, Deigendesch N, Berger CT, Daikeler T, et al. JAK inhibition in a patient with X-linked reticulate pigmentary disorder. J Clin Immunol. 2021;41(1):212–6.

    Article  PubMed  Google Scholar 

  9. Xu ZLZ. Image gallery: cutaneous findings in an adult with X-linked reticulate pigmentary disorder. Br J Dermatol. 2019;180(2):37.

    Article  Google Scholar 

  10. Fraile G, Norman F, Reguero ME, Defargues V, Redondo C. Cryptogenic multifocal ulcerous stenosing enteritis (CMUSE) in a man with a diagnosis of X-linked reticulate pigmentary disorder (PDR). Scand J Gastroenterol. 2008;43(4):506–10.

    Article  PubMed  Google Scholar 

  11. Motaparthi K, Hall B. Reticulate hyperpigmentation in a man with hypohidrosis and sinopulmonary infections. JAMA Dermatol. 2017;153(8):817–8.

    Article  PubMed  Google Scholar 

  12. Starokadomskyy P, Sifuentes-Dominguez L, Gemelli T, Zinn AR, Dossi MT, Mellado C, et al. Evolution of the skin manifestations of X-linked pigmentary reticulate disorder. Br J Dermatol. 2017;177(5):e200–1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Duman N, Ersoy-Evans S, Gököz Ö. Reticulate pigmentation with systemic manifestations in a child. Pediatr Dermatol. 2015;32(6):871–2.

    Article  PubMed  Google Scholar 

  14. Starokadomskyy P, Escala Perez-Reyes A, Burstein E. Immune dysfunction in Mendelian disorders of POLA1 deficiency. J Clin Immunol. 2021;41(2):285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gedeon AK, Mulley JC, Kozman H, Donnelly A, Partington MW. Localisation of the gene for X-linked reticulate pigmentary disorder with systemic manifestations (PDR), previously known as X-linked cutaneous amyloidosis. Am J Med Genet. 1994;52(1):75–8.

    Article  CAS  PubMed  Google Scholar 

  16. Jaeckle Santos LJ, Xing C, Barnes RB, Ades LC, Megarbane A, Vidal C, et al. Refined mapping of X-linked reticulate pigmentary disorder and sequencing of candidate genes. Hum Genet. 2008;123(5):469–76.

    Article  CAS  PubMed  Google Scholar 

  17. Starokadomskyy P, Gemelli T, Rios JJ, Xing C, Wang RC, Li H, et al. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat Immunol. 2016;17(5):495–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Esch H, Colnaghi R, Freson K, Starokadomskyy P, Zankl A, Backx L, et al. Defective DNA polymerase α-primase leads to X-linked intellectual disability associated with severe growth retardation, microcephaly, and hypogonadism. Am J Hum Genet. 2019;104(5):957–67.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim BS, Seo SH, Jung HD, Kwon KS, Kim MB. X-Linked reticulate pigmentary disorder in a female patient. Int J Dermatol. 2010;49(4):421–5.

    Article  PubMed  Google Scholar 

  20. Jaffar H, Shakir Z, Kumar G, Ali IF. Ichthyosis vulgaris: an updated review. Skin Health Dis. 2023;3(1):e187.

    Article  PubMed  Google Scholar 

  21. Čepelak I, Dodig S, Pavić I. Filaggrin and atopic march. Biochem Med (Zagreb). 2019;29(2):020501.

    Article  PubMed  Google Scholar 

  22. Thyssen JP, Godoy-Gijon E, Elias PM. Ichthyosis vulgaris: the filaggrin mutation disease. Br J Dermatol. 2013;168(6):1155–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, et al. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet. 2006;38(4):441–6.

    Article  CAS  PubMed  Google Scholar 

  24. van den Oord RA, Sheikh A. Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ. 2009;339:b2433.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Heimall J, Spergel JM. Filaggrin mutations and atopy: consequences for future therapeutics. Expert Rev Clin Immunol. 2012;8(2):189–97.

    Article  CAS  PubMed  Google Scholar 

  26. Kottyan LC, Davis BP, Sherrill JD, Liu K, Rochman M, Kaufman K, et al. Genome-wide association analysis of eosinophilic esophagitis provides insight into the tissue specificity of this allergic disease. Nat Genet. 2014;46(8):895–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Blanchard C, Stucke EM, Burwinkel K, Caldwell JM, Collins MH, Ahrens A, et al. Coordinate interaction between IL-13 and epithelial differentiation cluster genes in eosinophilic esophagitis. J Immunol. 2010;184(7):4033–41.

    Article  CAS  PubMed  Google Scholar 

  28. Weidinger S, O’Sullivan M, Illig T, Baurecht H, Depner M, Rodriguez E, et al. Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J Allergy Clin Immunol. 2008;121(5):1203-9.e1.

    Article  CAS  PubMed  Google Scholar 

  29. Moosbrugger-Martinz V, Leprince C, Méchin MC, Simon M, Blunder S, Gruber R, et al. Revisiting the roles of filaggrin in atopic dermatitis. Int J Mol Sci. 2022;23(10):5318.

  30. Drislane C, Irvine AD. The role of filaggrin in atopic dermatitis and allergic disease. Ann Allergy Asthma Immunol. 2020;124(1):36–43.

    Article  CAS  PubMed  Google Scholar 

  31. Clark MM, Hildreth A, Batalov S, Ding Y, Chowdhury S, Watkins K, et al. Diagnosis of genetic diseases in seriously ill children by rapid whole-genome sequencing and automated phenotyping and interpretation. Sci Transl Med. 2019;11(489):eaat6177.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Partington MW, Prentice RS. X-linked cutaneous amyloidosis: further clinical and pathological observations. Am J Med Genet. 1989;32(1):115–9.

    Article  CAS  PubMed  Google Scholar 

  33. Cazzato S, Omenetti A, Ravaglia C, Poletti V. Lung involvement in monogenic interferonopathies. Eur Respir Rev. 2020;29(158):200001.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Culley FJ. Natural killer cells in infection and inflammation of the lung. Immunology. 2009;128(2):151–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Starokadomskyy P, Wilton KM, Krzewski K, Lopez A, Sifuentes-Dominguez L, Overlee B, et al. NK cell defects in X-linked pigmentary reticulate disorder. JCI Insight. 2019;4(21):e125688.

  36. Minoche AE, Lundie B, Peters GB, Ohnesorg T, Pinese M, Thomas DM, et al. ClinSV: clinical grade structural and copy number variant detection from whole genome sequencing data. Genome Med. 2021;13(1):32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17(1):122.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paila U, Chapman BA, Kirchner R, Quinlan AR. GEMINI: integrative exploration of genetic variation and genome annotations. PLoS Comput Biol. 2013;9(7):e1003153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Gayevskiy V, Roscioli T, Dinger ME, Cowley MJ. Seave: a comprehensive web platform for storing and interrogating human genomic variation. Bioinformatics. 2019;35(1):122–5.

    Article  CAS  PubMed  Google Scholar 

  40. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17(5):405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  41. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt MS, McGowan-Jordan J, et al. HGVS recommendations for the description of sequence variants: 2016 update. Hum Mutat. 2016;37(6):564–9.

    Article  Google Scholar 

  42. Wright CF, FitzPatrick DR, Ware JS, Rehm HL, Firth HV. Importance of adopting standardized MANE transcripts in clinical reporting. Genet Med. 2023;25(2):100331.

    Article  CAS  PubMed  Google Scholar 

  43. Yap JY, Moens L, Lin M-W, Kane A, Kelleher A, Toong C, et al. Intrinsic defects in B cell development and differentiation, T cell exhaustion and altered unconventional T cell generation characterize human adenosine deaminase type 2 deficiency. J Clin Immunol. 2021;41(8):1915–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gray PE, Shadur B, Russell S, Mitchell R, Buckley M, Gallagher K, et al. Late-onset non-HLH presentations of growth arrest, inflammatory arachnoiditis, and severe infectious mononucleosis, in siblings with hypomorphic defects in UNC13D. Front Immunol. 2017;8:944.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the patient and his family for participating in this study.

Funding

WGS was performed by the Kinghorn Centre for Clinical Genomics Sequencing Laboratory. This study was supported by the NHMRC of Australia via a Leadership 1 Investigator Grant (2017463) awarded to CSM and Leadership 3 Investigator Grant awarded to SGT. CIRCA investigators are supported by the Jeffrey Modell Foundation and the John Brown Cook Foundation.

Author information

Authors and Affiliations

Authors

Contributions

P.E.G., M.W.Y.L., and C.S.M. designed the study and co-wrote the manuscript; all authors contributed to the revision of the final version of the manuscript and approved the final version submitted. P.E.G., M.W.Y.L., A.T., and P.S. assessed and treated the patient; L.B. and P.D. performed genomic analysis; I.V., D.T.A., and T.N. conducted experiments.

Corresponding authors

Correspondence to Margaret W. Y. Li or Paul E. Gray.

Ethics declarations

Ethics Approval

This study was carried out in accordance with the recommendations of Sydney Children’s Hospital ethics committee with written informed consent from all subjects. All subjects gave written informed consent in accordance with the Declaration of Helsinki. The protocol was approved for CIRCA—investigation of primary immunodeficiencies, by the Sydney Children’s Hospital.

Consent to Participate

The authors affirm that human research participants provided written informed consent for participation in this study in accordance with Sydney Children’s Hospital Ethics Committee and the Declaration of Helsinki.

Consent for Publication

The authors affirm that human research participants provided informed consent for publication, including publication of the images in Figs. 12, and 3.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M.W.Y., Burnett, L., Dai, P. et al. Filaggrin-Associated Atopic Skin, Eye, Airways, and Gut Disease, Modifying the Presentation of X-Linked Reticular Pigmentary Disorder (XLPDR). J Clin Immunol 44, 38 (2024). https://doi.org/10.1007/s10875-023-01637-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10875-023-01637-x

Keywords

Navigation