Skip to main content
Log in

The influence of isoprene peroxy radical isomerization mechanisms on ozone simulation with the presence of NOx

  • Published:
Journal of Atmospheric Chemistry Aims and scope Submit manuscript

Abstract

Isoprene peroxy radical isomerizations (1,5- and 1,6-H shifts) have recently been proposed as important pathways regenerating and recycling HOx (OH + HO2) in the atmosphere under low-NOx conditions (Peeters et al. Phys. Chem. Chem. Phys. 28: 5935–5939 2009; da Silva et al. Environ. Sci. Technol. 44:250–256 2010). Evaluation and comparison of the isoprene peroxy radical isomerization mechanisms from recent studies have been performed against isoprene-NOx experiments conducted in the UNC dual outdoor smog chambers. Five different kinetic mechanisms were tested in this study, including the original Master Chemical Mechanism (MCM) v3.1; two modified MCM mechanisms both implementing isoprene peroxy radical isomerization reactions but with different rate coefficients; the Carbon Bond 6 (CB6) mechanism; and the ISO-UNC mechanism. Sensitivity analyses of the unsaturated hydroxyperoxy aldehydes (HPALDs) reaction mechanisms under fast isomerization have also been performed. The results indicate that the fast isomerization mechanism and the mechanisms with high OH yields from HPALDs photolysis both significantly enhance HOx estimates with increasing isoprene/NOx ratios. However, O3 predictions, as well the isoprene decay rates are substantially overestimated. Our results suggest that given the current state of our knowledge, it is difficult to improve both HOx levels and maintain reasonable O3 simulations using the Peeters et al. (Peeters et al. Phys. Chem. Chem. Phys. 28: 5935–5939 2009) mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Archibald, A.T., Cooke, M.C., Utembe, S.R., Shallcross, D.E., Derwent, R.G., Jenkin, M.E.: Impact of mechanistic changes on HOx formation and recycling in the oxidation of isoprene. Atmos. Chem. Phys. 10, 8097–8118 (2010)

    Article  Google Scholar 

  • Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds. J. Phys. Chem. Ref. Data 26, 1–216 (1994)

    Google Scholar 

  • Butler, T.M., Taraborrelli, D., Brühl, C., Fischer, H., Harder, H., Maartinez, M., Williams, J., Lawrence, M.G., Lelieveld, J.: Improved simulation of isoprene oxidation chemistry with the ECHAM5/MESSy chemistry-climate model: lessons from the GABRIEL airborne field campaign. Atmos. Chem. Phys. 8, 4529–4546 (2008)

    Article  Google Scholar 

  • Carter, W.P.L., Atkinson, R.: Development and evaluation of a detailed mechanism for the atmospheric reactions of isoprene and NOx. Int. J. Chem. Kinet. 28, 497–530 (1996)

    Article  Google Scholar 

  • Crounse, J.D., Paulot, F., Kjaergaard, H.G., Wennberg, P.O.: Peroxy radical isomerization in the oxidation of isoprene. Phys. Chem. Chem. Phys. 13, 13607–13613 (2011)

    Article  Google Scholar 

  • da Silva, G., Graham, C., Wang, Z.: Unimolecular β-hydroxyperoxy radical decomposition with OH recycling in the photochemical oxidation of isoprene. Environ. Sci. Technol. 44, 250–256 (2010)

    Article  Google Scholar 

  • Hu, D., Tolocka, M., Li, Q., Kamens, R.M.: A kinetic mechanism for predicting secondary organic aerosol formation from toluene oxidation in the presence of NOx and natural sunlight. Atmos. Environ. 41, 6478–6496 (2007)

    Article  Google Scholar 

  • Kamens, R.M., Zhang, H., Chen, E.H., Zhou, Y., Parikh, H.M., Wilson, R.L., Galloway, K.E., Rosen, E.P.: Secondary organic aerosol formation from toluene in an atmospheric hydrocarbon mixture: water and particle seed effects. Atmos. Environ. 45, 2324–2334 (2011)

    Article  Google Scholar 

  • Lee, S., Jang, M., Kamens, R.K.: SOA formation from the photooxidation of α-pinene in the presence of freshly emitted diesel soot exhaust. Atmos. Environ. 38, 2597–2605 (2004)

    Article  Google Scholar 

  • Lelieveld, J., Butler, T.M., Crowley, J.N., Dillon, T.J., Fischer, H., Ganzeveld, H., Harder, H., Lawrence, M.G., Martinez, M., Taraborrelli, D., Williams, J.: Atmospheric oxidation capaciity sustained by a tropical forest. Nature 452, 737–740 (2008)

    Article  Google Scholar 

  • Leungsakul, S., Jeffries, H.E., Kamens, R.M.: A kinetic mechanism for predicting secondary aerosol formation from the reactions of d-limonene in the presence of oxides of nitrogen and natural sunlight. Atmos. Environ. 39, 7063–7082 (2005)

    Article  Google Scholar 

  • National Research Council: Rethinking the ozone problem in urban and regional air pollution, pp. 215–218. National Academy Press (1991)

  • Nguyen, T.L., Vereecken, L., Peeters, J.: HOx regeneration in the oxidation of isoprene III: theoretical study of the key isomerisation of the Z-δ-hydroxy-peroxy isoprene radical. Chem. Phys. Chem. 11, 3996–4001 (2010)

    Article  Google Scholar 

  • Peeters, J., Müller, J.-F.: HOx radical regeneration in isoprene oxidation via peroxy radical isomerisations. II: experimental evidence and global impact. Phys. Chem. Chem. Phys. 12, 14227–14235 (2010)

    Article  Google Scholar 

  • Peeters, J., Nguyen, T.L., Vereecken, L.: HOx radical regeneration in the oxidation of isoprene. Phys. Chem. Chem. Phys. 28, 5935–5939 (2009)

    Article  Google Scholar 

  • Pinho, P.G., Pio, C.A., Jenkin, M.E.: Evaluation of isoprene degradation in the detailed tropospheric chemical mechanism, MCM v3, using environmental chamber data. Atmos. Environ. 39, 1303–1322 (2005)

    Article  Google Scholar 

  • Ren, R., Olson, J.R., Crawford, J.H., Brune, W.H., Mao, J., Long, R.B., Chen, Z., Chen, G., Avery, M.A., Schse, G.W., Barrick, J.D., Diskin, G.S., Huey, L.G., Fried, A., Cohen, R.C., Heikes, B., Wenberg, P.O., Singh, H.B., Blake, D.R., Shetter, R.E.: HOx chemistry during INTEX-A 2004: Observation, model calculation, and comparison with previous studies. J. Geophys. Res. 113, D05310 (2008). doi:10.1029/2007JD009166

    Article  Google Scholar 

  • Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J.: Protocol for the development of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-aromatic volatile organic compounds. Atmos. Chem. Phys. 3, 161–180 (2003)

    Article  Google Scholar 

  • Stavrakou, T., Petters, J., Müller, J.-F.: Improved global modelling of HOx recycling in isoprene oxidation: evaluation against the GABRIEL and INTEX-A aircraft campaign measurement. Atmos. Chem. Phys. 10, 9863–9873 (2010)

    Article  Google Scholar 

  • Stone, D., Evans, M.J., Edwards, P.M., Commane, R., Ingham, T., Rickard, A.R., Brookes, D.M., Hopkins, J., Leigh, R.J., Lewis, A.C., Monks, P.S., Oram, D., Reeves, C.E., Stewart, D., Heard, D.E.: Isoprene oxidation mechanisms: measurements and modelling of OH and HO2 over a South-East Asian tropical rainforest during the OP3 field campaign. Atmos. Chem. Phys. 11, 6749–6771 (2011)

    Article  Google Scholar 

  • Taraborrelli, D., Lawrence, M.G., Crowley, J.N., Dillion, T.J., Groβ, C.B.M., Vereecken, L., Lelieveld, J.: Hydroxyl radical buffered by isoprene oxidation over tropical forests. Nat. Geosci. 5, 190–193 (2012)

    Article  Google Scholar 

  • Whalley, L.K., Edwards, P.M., Furneaux, K.L., Goddard, A., Ingham, T., Evans, M.J., Stone, D., Hopkins, J.R., Jones, C.E., Karunaharan, A., Lee, J.D., Lewis, A.C., Monks, P.S., Moller, S.J., Heard, D.E.: Quantifying the magnitude of a missing hydroxyl radical source in a tropical rainforest. Atmos. Chem. Phys. 11, 7223–7233 (2011)

    Article  Google Scholar 

  • Wolfe, G.M., Crounse, J.D., Parrish, J.D., St. Clair, J.M., Beaver, M.R., Paulot, F., Yoon, T.P., Wennberg, P.O., Keutsch, F.N.: Photolysis, OH reactivity and ozone reactivity of a proxy for isoprene-derived hydroperoxyenals (HPALDs). Phys. Chem. Chem. Phys. (2012). doi:10.1039/C2CP40388A

  • Yarwood, G., Whitten, G.Z., Jung, J., Heo, G., Allen, D.T.: Final Report. Development, Evaluation and Testing of Version 6 of the Carbon Bond Chemical Mechanism (CB6). (2010)

  • Zhang, H., Rattavavaraha, W., Zhou, Y., Bapat, J., Rosen, E.P., Sexton, K.G., Kamens, R.M.: A new gas-phase condensed mechanism of isoprene-NOx photooxidation. Atmos. Environ. 45, 4507–4521 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research was solely supported by the U.S. Environmental Protection Agency (Contract No. EP-W-09023) to the University of North Carolina at Chapel Hill.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Kamens.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 310 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Kamens, R.M. The influence of isoprene peroxy radical isomerization mechanisms on ozone simulation with the presence of NOx . J Atmos Chem 69, 67–81 (2012). https://doi.org/10.1007/s10874-012-9230-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10874-012-9230-9

Keywords

Navigation