Skip to main content
Log in

Crystal Structure of 2-(Ethoxymethylene)Malononitrile, Hirshfeld Surface Analysis and DFT Evaluation of the Non-covalent Interactions Energy

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The presented study describe the crystal structure of 2-(Ethoxymethylene)malononitrile (1), C6H6N2O, in the monoclinic space group P21/m with Z = 2, a = 6.798(3), b = 6.172(3), c = 8.844(5) Å. The unit cell of a single crystal of 1 contains two antiparallel oriented molecules. Ethyl fragment demonstrates a disorder with equal occupancy values of 0.5 and a total site-occupation factor (s.o.f.) of 1.0. The molecules of 1 are linked into infinite chains of co-oriented molecules parallel to the a axis via N-H···N ≡ C close contacts with the distance of 2.494(3) Å. There are also weak hydrogen bonds > O···H- between the oxygen atom and the ethyl moiety. The estimation of the energy of non-covalent interactions was conducted by DFT method with different functionals. The best reproducibility of the geometric parameters of those interactions was obtained by using M06-2X functional. The estimated energy value was found to be − 1.20 kcal/mol.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The structure of crystal 1 has been deposited in the Cambridge Crystallographic Data Centre with deposition number CCDC 2180335. These data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/ (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033).

References

  1. Diels O, Gärtner H, Kaack R (1922) Über Versuche Zur Darstellung Des carbonylcyanids und eine Methode Zur Gewinnung ungesättigter Amino-Säuren. Ber Dtsch Chem Ges A/B 55:3439–3448. https://doi.org/10.1002/cber.19220551013

    Article  Google Scholar 

  2. Ochiai M, Yamamoto S, Suefuji T, Chen D-W (2001) Stereoselective synthesis of (Z)-Enethiols and their derivatives: Vinylic SN2 reaction of (E)-Alkenyl(phenyl)-λ3-iodanes with Thioamides. Org Lett 3:2753–2756. https://doi.org/10.1021/ol016356c

    Article  CAS  PubMed  Google Scholar 

  3. Konakahara T, Sugama N, Yamada A, Kakehi A, Sakai N (2001) Cyclization reaction of N-Silyl-1-azaallyl anions with Michael Acceptors as a New Synthetic Method of 2,3,5,6-Tetra- and 2,3,6-Trisubstituted pyridines. Heterocycles 55:313–322. https://doi.org/10.3987/COM-00-9096

    Article  CAS  Google Scholar 

  4. Osipov AK, Anis’kov AA, Yegorova AY (2017) Synthesis and configuration of (arylamino)methylidene-3H-furan-2-ones. Russ J Org Chem 53:210–214. https://doi.org/10.1134/S1070428017020117

    Article  CAS  Google Scholar 

  5. Sultana S, Kumar G, Sarma LS, Venkatramu V, Gangi Reddy NC (2023) Nitrogen-Doped TiO2 Nanotubes‐Catalyzed synthesis of small D‐π‐A‐Type knoevenagel adducts and β‐Enaminones. Eur J Org Chem 26:e202300032. https://doi.org/10.1002/ejoc.202300032

    Article  CAS  Google Scholar 

  6. Gately TJ, Cook C, Almuzarie R, Islam I, Gardner Z, Iuliucci RJ, Al-Kaysi RO, Beran GJO, Bardeen CJ (2022) Effect of Fluorination on the polymorphism and Photomechanical properties of Cinnamalmalononitrile crystals. Cryst Growth Des 22:7298–7307. https://doi.org/10.1021/acs.cgd.2c00930

    Article  CAS  Google Scholar 

  7. Huang H, Xu L (2020) Crystal structure of (E)-2-(5,5-dimethyl-3-(4-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)oxy)styryl)cyclohex-2-en-1-ylidene)malononitrile, C 25 H 19 N 5 O 4. Zeitschrift für Kristallographie -. New Cryst Struct 235:1073–1075. https://doi.org/10.1515/ncrs-2020-0176

    Article  CAS  Google Scholar 

  8. Sun C-T, Li Q (2023) Crystal structure of (E)-2-(2-(4-(diethylamino)styryl)-1-ethyl-1,4-dihydroquinolin-4-yl) malononitrile, C26H26N4. Zeitschrift für Kristallographie -. New Cryst Struct 238:1103–1104. https://doi.org/10.1515/ncrs-2023-0340

    Article  CAS  Google Scholar 

  9. De Souza JM, Abdiaj I, Chen J, Hanson K, De Oliveira KT, McQuade DT (2020) Increasing scope of clickable fluorophores: Electrophilic Substitution of Ylidenemalononitriles. J Org Chem 85:11822–11834. https://doi.org/10.1021/acs.joc.0c01551

    Article  CAS  PubMed  Google Scholar 

  10. Belahlou H, Waszkowska K, Bouraiou A, Bendeif E, Taboukhat S, Bouchouit K, Sahraoui B (2020) New architecture of organo electronic chalcones derivatives: synthesis, crystal structures and optical properties. Opt Mater 108:110188. https://doi.org/10.1016/j.optmat.2020.110188

    Article  CAS  Google Scholar 

  11. Rietsch P, Witte F, Sobottka S, Germer G, Krappe A, Güttler A, Sarkar B, Paulus B, Resch-Genger U, Eigler S (2019) Diaminodicyanoquinones: fluorescent dyes with high dipole moments and Electron‐Acceptor Properties. Angew Chem Int Ed 58:8235–8239. https://doi.org/10.1002/anie.201903204

    Article  CAS  Google Scholar 

  12. Sysoiev D, Huhn T (2020) Basic enemies of photochromism: irreversible transformation of fluorinated diarylethenes to polyenic enamines and enols. Photochem Photobiol Sci 19:1511–1516. https://doi.org/10.1039/d0pp00292e

    Article  CAS  PubMed  Google Scholar 

  13. Menekse K, Chen P, Mahlmeister B, Anhalt O, Kudzus A, Stolte M, Würthner F (2020) Quinoidal dicyanomethylene-endcapped cyclopentadithiophenes as vacuum-processable n-type semiconductors. J Mater Chem C 8:15303–15311. https://doi.org/10.1039/D0TC02988B

    Article  CAS  Google Scholar 

  14. Gräßler N, Wolf S, Holzmüller F, Zeika O, Vandewal K, Leo K (2019) Heteroquinoid Merocyanine dyes with High Thermal Stability as Absorber materials in Vacuum-Processed Organic Solar cells. Eur J Org Chem 2019:845–851. https://doi.org/10.1002/ejoc.201801512

    Article  CAS  Google Scholar 

  15. Al-Refai M, Ali BF, Said AB, Geyer A, Marsch M, Harms K (2019) Synthesis, characterization, crystal structure and supramolecularity of ethyl (E)-2-cyano-3-(3-methylthiophen-2-yl)acrylate and a new polymorph of ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate. Acta Crystallogr E Cryst Commun 75:1357–1361. https://doi.org/10.1107/S2056989019011435

    Article  CAS  Google Scholar 

  16. Kalkhambkar RG, Gayathri D, Gupta VK, Kant R, Jeong YT (2012) (E)-Ethyl 2-cyano-3-(furan-2-yl)acrylate. Acta Crystallogr E Struct Rep Online 68:o1482–o1482. https://doi.org/10.1107/S1600536812016510

    Article  CAS  Google Scholar 

  17. Ding R, He Y, Xu J, Liu H, Wang X, Feng M, Qi C, Zhang J, Peng C (2012) Preparation and bioevaluation of 99mTc nitrido radiopharmaceuticals with pyrazolo[1,5-a]pyrimidine as tumor imaging agents. Med Chem Res 21:523–530. https://doi.org/10.1007/s00044-011-9558-8

    Article  CAS  Google Scholar 

  18. CrysAlisPro A, Technologies Version 1.171.37.33 (release 27-03-2014 CrysAlis171.NET)

  19. Bourhis LJ, Dolomanov OV, Gildea RJ, Howard JAK, Puschmann H (2015) The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – Olex2 dissected. Acta Crystallogr Found Adv 71:59–75. https://doi.org/10.1107/S2053273314022207

    Article  CAS  Google Scholar 

  20. Sheldrick GM (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallogr Found Adv 71:3–8. https://doi.org/10.1107/S2053273314026370

    Article  CAS  Google Scholar 

  21. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) OLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  22. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Mennucci B, Petersson G, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J (2010) Fox DJ Gaussian 09, Rev. C.01,. Gaussian, Inc., Wallingford CT

  23. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  24. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  25. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57. https://doi.org/10.1016/j.cplett.2004.06.011

    Article  CAS  Google Scholar 

  26. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241. https://doi.org/10.1007/s00214-007-0310-x

    Article  CAS  Google Scholar 

  27. Zhao Y, Truhlar DG (2004) Hybrid Meta Density Functional Theory methods for Thermochemistry, Thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and Comparative Assessments for Hydrogen Bonding and Van Der Waals interactions. J Phys Chem A 108:6908–6918. https://doi.org/10.1021/jp048147q

    Article  CAS  Google Scholar 

  28. Remya K, Suresh CH (2013) Which density functional is close to CCSD accuracy to describe geometry and interaction energy of small noncovalent dimers? A benchmark study using Gaussian09. J Comput Chem 34:1341–1353. https://doi.org/10.1002/jcc.23263

    Article  CAS  PubMed  Google Scholar 

  29. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799. https://doi.org/10.1002/jcc.20495

    Article  CAS  PubMed  Google Scholar 

  30. Jones RG (1952) Reactions of orthoesters with active Methylene compounds. J Am Chem Soc 74:4889–4891. https://doi.org/10.1021/ja01139a046

    Article  CAS  Google Scholar 

  31. Post HW, Erickson ER (1937) The reactions of Ortho Esters with certain acid anhydrides *. J Org Chem 02:260–266. https://doi.org/10.1021/jo01226a008

    Article  CAS  Google Scholar 

  32. Castro Agudelo B, Cárdenas JC, Macías MA, Ochoa-Puentes C, Sierra CA (2017) Crystal structure of ethyl (E)-2-cyano-3-(thiophen-2-yl)acrylate: two conformers forming a discrete disorder. Acta Crystallogr E Cryst Commun 73:1287–1289. https://doi.org/10.1107/S2056989017010799

    Article  CAS  Google Scholar 

  33. Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theoret Chim Acta 44:129–138. https://doi.org/10.1007/BF00549096

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (grant no. 24-23-00482 to VSG).

Author information

Authors and Affiliations

Authors

Contributions

V.S.G. and I.A.D. wrote the main manuscript text, A.E.S. and M.V.D. prepared Figs. 1, 2, 3 and 4. A.Yu.Ye. supervised the work. All authors reviewed the manuscript.

Corresponding author

Correspondence to Vyacheslav S. Grinev.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grinev, V.S., Demeshko, I.A., Sklyar, A.E. et al. Crystal Structure of 2-(Ethoxymethylene)Malononitrile, Hirshfeld Surface Analysis and DFT Evaluation of the Non-covalent Interactions Energy. J Chem Crystallogr (2024). https://doi.org/10.1007/s10870-024-01019-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10870-024-01019-0

Keywords

Navigation