Skip to main content
Log in

Synthesis, Crystal Structure, Hirshfeld Surface Analysis and DFT Studies of (Z)-1-(2-(4-Nitrophenyl)Hydrazineylidene)Naphthalen-2(1H)-One

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Abstract

A new Schiff base compound, (Z)-1-(2-(4-nitrophenyl)hydrazineylidene)naphthalen-2(1H)-one, was prepared and structurally characterized by single-crystal X-ray diffraction. The compound crystallizes in the P2/n monoclinic space group with a = 15.9421(6) Å, b = 7.7607(3) Å, c = 21.8052(9) Å, and β = 92.946(3)°. The molecular geometry of the compound was optimized using density functional theory calculation at HSEH1PBE/cc-pvdz level. Hirshfeld surface analyses for the compound were presented and discussed. The computational findings show that theoretical geometric parameters are consistent with experimental ones. The calculated and experimental results show the title compound tends to the hydrazone (NH) form. Stabilization of the crystal structure was achieved by means of intramolecular N–H⋯O and intermolecular C–H⋯O interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

REFERENCES

  1. T. A. Khattab, A. A. Allam, S. I. Othman, M. Bin-Jumah, H. M. Al-Harbi, and M. M. G. Fouda. Synthesis, solvatochromic performance, pH sensing, dyeing ability, and antimicrobial activity of novel hydrazone dyestuffs. J. Chem., 2019, 2019, 7814179. https://doi.org/10.1155/2019/7814179

    Article  CAS  Google Scholar 

  2. H. Valizadeh and A. Shomali. A new nitrite ionic liquid (IL-ONO) as a nitrosonium source for the efficient diazotization of aniline derivatives and in-situ synthesis of azo dyes. Dyes Pigm., 2012, 92, 1138-1143. https://doi.org/10.1016/j.dyepig.2010.11.010

    Article  CAS  Google Scholar 

  3. X. Su and I. Aprahamian. Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev., 2014, 43, 1963-1981. https://doi.org/10.1039/C3CS60385G

    Article  CAS  PubMed  Google Scholar 

  4. L. A. Tatum, X. Su, and I. Aprahamian. Simple hydrazone building blocks for complicated functional materials. Acc. Chem. Res., 2014, 47, 2141-2149. https://doi.org/10.1021/ar500111f

    Article  CAS  PubMed  Google Scholar 

  5. L. Popiołek. Hydrazide–hydrazones as potential antimicrobial agents: overview of the literature since 2010. Med. Chem. Res., 2017, 26, 287-301. https://doi.org/10.1007/s00044-016-1756-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. Popiołek, B. Rysz, A. Biernasiuk, and M. Wujec. Synthesis of promising antimicrobial agents: Hydrazide-hydrazones of 5-nitrofuran-2-carboxylic acid. Chem. Biol. Drug Des., 2020, 95, 260-269. https://doi.org/10.1111/cbdd.13639

    Article  CAS  PubMed  Google Scholar 

  7. H. M. Marwani, A. M. Asiri, and S. A. Khan. Green-synthesis, characterization, photostability and polarity studies of novel Schiff base dyes using spectroscopic methods. Russ. J. Bioorg. Chem., 2012, 38, 533-538. https://doi.org/10.1134/S1068162012050056

    Article  CAS  Google Scholar 

  8. K. C. Gupta and A. K. Sutar. Catalytic activities of Schiff base transition metal complexes. Coord. Chem. Rev., 2008, 252, 1420-1450. https://doi.org/10.1016/j.ccr.2007.09.005

    Article  CAS  Google Scholar 

  9. A. Caballero, R. Martinez, V. Lloveras, I. Ratera, J. Vidal-Gancedo, K. Wurst, A. Tarraga, P. Molina, and J. Veciana. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. J. Am. Chem. Soc., 2005, 127, 15666/15667. https://doi.org/10.1021/ja0545766

    Article  CAS  PubMed  Google Scholar 

  10. R. L. Sheng, P. F. Wang, W. M. Liu, X. H. Wu, and S. K. Wu. A new colorimetric chemosensor for Hg2+ based on coumarin azine derivative. Sens. Actuators B, 2008, 128, 507-511. https://doi.org/10.1016/j.snb.2007.07.069

    Article  CAS  Google Scholar 

  11. S. H. Kim, S. Y. Gwon, S. M. Burkinshaw, and Y. A. Son. The synthesis and proton-induced spectral switching of a novel azine dye and its boron complex. Dyes Pigm., 2010, 87, 268-271. https://doi.org/10.1016/j.dyepig.2010.04.006

    Article  CAS  Google Scholar 

  12. J. M. Locke, R. Griffith, T. D. Bailey, and R. L. Crumbie. Competition between cyclisation and bisimine formation in the reaction of 1,3-diaminopropanes with aromatic aldehydes. Tetrahedron, 2009, 65, 10685-10692. https://doi.org/10.1016/j.tet.2009.10.060

    Article  CAS  Google Scholar 

  13. S. Rayati, S. Zakavi, M. Koliaei, A. Wojtczak, and A. Kozakiewicz. Electron-rich salen-type Schiff base complexes of Cu(II) as catalysts for oxidation of cyclooctene and styrene with tert-butylhydroperoxide: A comparison with electron-deficient ones. Inorg. Chem. Commun., 2010, 13, 203-207. https://doi.org/10.1016/j.inoche.2009.11.016

    Article  CAS  Google Scholar 

  14. K. Butsch, T. Gunther, A. Klein, K. Stirnat, A. Berkessel, and J. Neudorfl. Redox chemistry of copper complexes with various salen type ligands. Inorg. Chim. Acta, 2013, 394, 237-246. https://doi.org/10.1016/j.ica.2012.08.016

    Article  CAS  Google Scholar 

  15. H. P. Ebrahimi, J. S. Hadi, Z. A. Abdulnabi, and Z. Bolandnazar. Spectroscopic, thermal analysis and DFT computational studies of salen-type Schiff base complexes. Spectrochim. Acta, Part A, 2014, 117, 485-492. https://doi.org/10.1016/j.saa.2013.08.044

    Article  CAS  PubMed  Google Scholar 

  16. S. Menati, A. Azadbakht, R. Azadbakht, A. Taeb, and A. Kakanejadifard. Synthesis, characterization, and electrochemical study of some novel, azo-containing Schiff bases and their Ni(II) complexes. Dyes Pigm., 2013, 98, 499-506. https://doi.org/10.1016/j.dyepig.2013.04.009

    Article  CAS  Google Scholar 

  17. W. Radecka-Paryzek, V. Patroniak, and J. Lisowski. Metal complexes of polyaza and polyoxaaza Schiff base macrocycles. Coord. Chem. Rev., 2005, 249, 2156-2175. https://doi.org/10.1016/j.ccr.2005.02.021

    Article  CAS  Google Scholar 

  18. S.-Z. Li, L. Tong, X. Li, and W.-K. Dong. New insight into two penta-coordinated multinuclear copper(II) single-armed salamo-based complexes. Inorg. Chim. Acta, 2022, 540, 121047. https://doi.org/10.1016/j.ica.2022.121047

    Article  CAS  Google Scholar 

  19. S.-Z. Li, Y.-X. Wei, Y. Huang, and W.-K. Dong, Counteranion-driven self-assembly of di- and tetra-nuclear Zn(II) single-armed salamo-type complexes. J. Mol. Struct., 2022, 1265, 133473. https://doi.org/10.1016/j.molstruc.2022.133473

    Article  CAS  Google Scholar 

  20. C. T. Grainger and J. F. McConnell. The crystal structure of 1-p-nitrobenzeneazo-2-naphthol (Para Red) from overlapped twin-crystal data. Acta Crystallogr. B, 1969, 25, 1962-1970. https://doi.org/10.1107/S0567740869005036

    Article  Google Scholar 

  21. A. Whitaker. Crystal data for a second polymorph (β) of C.I. Pigment Red 1,1-[(4-nitrophenyl)azo]-2-naphthol. J. Appl. Crystallogr., 1979, 12, 626/627. https://doi.org/10.1107/S0021889879013509

    Article  CAS  Google Scholar 

  22. A. Whitaker. Crystal data for a third polymorph (γ) of C.I. Pigment Red 1,1-[(4-nitrophenyl)azo]-2-naphthol. J. Appl. Crystallogr., 1980, 13, 458/459. https://doi.org/10.1107/S002188988001254X

    Article  CAS  Google Scholar 

  23. A. Whitaker. The crystal structure of a second polymorph (β) of C.I. Pigment Red 1,1-[(4-nitrophenyl)azo]-2-naphthol. Z. Kristallogr., 1980, 152, 227-238. https://doi.org/10.1524/zkri.1980.152.14.227

    Article  CAS  Google Scholar 

  24. O. S. Bushuyev, T. A. Singleton, and C. J. Barrett. Fast, reversible, and general photomechanical motion in single crystals of various azo compounds using visible light. Adv. Mater., 2013, 25, 1796-1800. https://doi.org/10.1002/adma.201204831

    Article  CAS  PubMed  Google Scholar 

  25. X-AREA Version 1.18, X-RED32 Version 1.04. Darmstadt, Germany: Stoe and Cie, 2002.

  26. L. Palatinus and G. Chapuis. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr., 2007, 40, 786-790. https://doi.org/10.1107/S0021889807029238

    Article  CAS  Google Scholar 

  27. G. M. Sheldrick. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem., 2015, 71(1), 3-8. https://doi.org/10.1107/s2053229614024218

    Article  Google Scholar 

  28. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, and H. Puschmann. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr., 2009, 42, 339-341. https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  29. J. Heyd, G. E. Scuseria, and M. Ernzerhof. Erratum: “Hybrid functionals based on a screened Coulomb potential” (J. Chem. Phys., 118, 8207 (2003)). J. Chem. Phys., 2006, 124(21), 219906. https://doi.org/10.1063/1.2204597

    Article  PubMed  Google Scholar 

  30. A. V. Krukau, O. A. Vydrov, A. F. Izmaylov, and G. E. Scuseria. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys., 2006, 125, 224106. https://doi.org/10.1063/1.2404663

    Article  PubMed  Google Scholar 

  31. T. H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys., 1989, 90, 1007-1023. https://doi.org/10.1063/1.456153

    Article  CAS  Google Scholar 

  32. A. K. Wilson, T. van Mourik, and T. H. Dunning Jr. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. J. Mol. Struct.: THEOCHEM, 1996, 388, 339-349. https://doi.org/10.1016/S0166-1280(96)80048-0

    Article  CAS  Google Scholar 

  33. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox. Gaussian09, Revision E.01. Wallingford, CT, USA: Gaussian Inc., 2009.

  34. F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen, and R. Taylor. Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds. J. Chem. Soc. Perkin Trans. 2, 1987, (12), S1. https://doi.org/10.1039/p298700000s1

    Article  Google Scholar 

  35. J. Bernstein, R. E. Davis, L. Shimoni, and N.-L. Chang. Patterns in hydrogen bonding: functionality and graph set analysis in crystals. Angew. Chem., Int. Ed. Engl., 1995, 34(15), 1555-1573. https://doi.org/10.1002/anie.199515551

    Article  CAS  Google Scholar 

  36. M. A. Spackman and J. J. McKinnon. Fingerprinting intermolecular interactions in molecular crystals. CrystEngComm, 2002, 4, 378-392. https://doi.org/10.1039/B203191B

    Article  CAS  Google Scholar 

  37. M. A. Spackman and P. G. Byrom. A novel definition of a molecule in a crystal. Chem. Phys. Lett., 1997, 267, 215-220. https://doi.org/10.1016/S0009-2614(97)00100-0

    Article  CAS  Google Scholar 

  38. J. J. McKinnon, A. S. Mitchell, and M. A. Spackman. Hirshfeld surfaces: A new tool for visualising and exploring molecular crystals. Chem. Eur. J., 1998, 4, 2136-2141. https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2136::AID-CHEM2136>3.0.CO;2-G

    Article  CAS  Google Scholar 

  39. J. J. McKinnon, D. Jayatilaka, and M. A. Spackman. Towards quantitative analysis of intermolecular interactions with Hirshfeld surfaces. Chem. Commun., 2007, 37, 3814-3816. https://doi.org/10.1039/B704980C

    Article  Google Scholar 

  40. A. L. Rohl, M. Moret, W. Kaminsky, K. Claborn, J. J. Mckinnon, and B. Kahr. Hirshfeld surfaces identify inadequacies in computations of intermolecular interactions in crystals: Pentamorphic 1,8-dihydroxyanthraquinone. Cryst. Growth Des., 2008, 8, 4517-4525. https://doi.org/10.1021/cg8005212

    Article  CAS  Google Scholar 

  41. T. Maity, H. Mandal, A. Bauza, B. C. Samanta, A. Frontera, and S. K. Seth. Quantifying conventional C–H⋯π(aryl) and unconventional C–H⋯π(chelate) interactions in dinuclear Cu(II) complexes: Experimental observations, Hirshfeld surface and theoretical DFT study. New J. Chem., 2018, 42, 10202-10213. https://doi.org/10.1039/C8NJ00747K

    Article  CAS  Google Scholar 

  42. S. K. Seth. The importance of CH⋯X (X = O, π) interaction of a new mixed ligand Cu(II) coordination polymer: Structure, Hirshfeld surface and theoretical studies. Crystals, 2018, 8, 455. https://doi.org/10.3390/cryst8120455

    Article  CAS  Google Scholar 

  43. P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, and M. A. Spackman. CrystalExplorer: A program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals J. Appl. Crystallogr., 2021, 54(3), 1006-1011. https://doi.org/10.1107/S1600576721002910

    Article  CAS  Google Scholar 

  44. R. G. Parr, L. Szentpaly, and S. Liu. Electrophilicity index. J. Am. Chem. Soc., 1999, 121, 1922-1924. https://doi.org/10.1021/ja983494x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yildirim Gümüşhan.

Ethics declarations

The author declares that he has no conflicts of interests.

Additional information

Text © The Author(s), 2023, published in Zhurnal Strukturnoi Khimii, 2023, Vol. 64, No. 8, 114403.https://doi.org/10.26902/JSC_id114403

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim Gümüşhan, I. Synthesis, Crystal Structure, Hirshfeld Surface Analysis and DFT Studies of (Z)-1-(2-(4-Nitrophenyl)Hydrazineylidene)Naphthalen-2(1H)-One. J Struct Chem 64, 1435–1447 (2023). https://doi.org/10.1134/S0022476623080085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0022476623080085

Keywords

Navigation