Skip to main content
Log in

Supramolecular Complexes Built of Octahedral [Ta6Cl12(CN)6]3−/4− Clusters and Terpyridine-Metal Complexes

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The preparation and characterization of two supramolecular complexes from octahedral [Ta6Cl12(CN)6]4−/3− units and 2, 2′: 6′, 2″-terpyridine (Terpy) metal complexes as building blocks are reported. Single crystal analyses revealed [Mn(Terpy)]2[Ta6Cl12(CN)6]·MeOH (1) features a neutral two-dimensional (2D) framework composed of layers based on [Ta6Cl12(CN)6]4− and [Mn(Terpy)]2+. Each layer is built of 6-connected [Ta6Cl12]2+ and 3-connected Mn(II) nodes bridged by cyanide ligands. The layers are held together by MeOH molecules. The layered structure is maintained after the removal of solvent molecule (MeOH) upon heating, leading to the formation of [Mn(Terpy]2[Ta6Cl12(CN)6] (1′). In the case of using Gd3+, the resultant product was revealed by single-crystal analyses to be an ionic compound [Gd(Terpy)(H2O)4(DMF)2][Ta6Cl12(CN)6]⋅DMF ⋅3H2O (2). 2 has a three-dimensional (3D) framework built of [Gd(Terpy)(H2O)4(DMF)2]3+ and [Ta6Cl12(CN)6]3− ions connected to each other via extensive hydrogen bonds and π-π interactions between the cations, anions, and solvent molecules. Thermal stabilities of 12 are reported.

Graphical Abstract

The X-ray structures and thermal stabilities of a coordination polymer [Mn(Terpy)]2[Ta6Cl12(CN)6] ⋅MeOH and an ionic compound [Gd(Terpy)(H2O)4(DMF)2][Ta6Cl12(CN)6]⋅DMF⋅3H2O are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The online version of this article contains supplementary material that are available to authorized users.

References

  1. Williams GT, Haynes CJE, Fares M, Caltagirone C, Hiscock JR, Gale PA (2021) Chem Soc Rev 50:2737–2763

    Article  CAS  PubMed  Google Scholar 

  2. Steed JW, Atwood JL (2022) Supramolecular Chemistry, 3rd edn. Wiley

    Google Scholar 

  3. Olivo G, Capocasa G, Giudice DD, Lanzalunga O, Stefano SD (2021) Chem Soc Rev 50:7681–7724

    Article  CAS  PubMed  Google Scholar 

  4. Wu D, Zhang PF, Yang GP, Hou L, Zhang WY, Han YF, Liu P, Wang YY (2021) Coord Chem Rev 434:213709

    Article  CAS  Google Scholar 

  5. Hu ZG, Wang YX (2021) Zhao D 50:4629–4683

    CAS  Google Scholar 

  6. Dong XY, Si YB, Yang JS, Zhang C, Han Z, Luo P, Wang ZY, Zang SQ, Mak TCW (2020) Nature Comm 11:3678

    Article  CAS  Google Scholar 

  7. Che CM, Lai SW (2005) Coord Chem Rev 249:1296–1309

    Article  CAS  Google Scholar 

  8. Farley CM, Uyeda C (2019) Trends Chem 1:497–509

    Article  CAS  Google Scholar 

  9. Fedorov VE, Naumov NG (2019) Ligated transition metal clusters in solid-state chemistry. Springer Nature Switzerland AG, Cham

    Google Scholar 

  10. Lemoine P, Halet JF, Cordier S (2019) Ligated transition metal clusters in solid-state chemistry. Springer Nature Switzerland AG, Cham

    Google Scholar 

  11. Litvinova YM, Gayfulin YM, Kovalenko KA, Samsonenko DG, van Leusen J, Korolkov IV, Fedin VP, Mironov YV (2018) Inorg Chem 57:2072–2084

    Article  CAS  PubMed  Google Scholar 

  12. Daigre G, Lemoine P, Pham TD, Demange V, Gautier R, Naumov NG, Ledneva A, Amela-Cortes M, Dumait N, Audebrand N, Cordier S (2018) CrystEngComm 20:3396–3408

    Article  CAS  Google Scholar 

  13. Zhang JJ, Zhou HJ, Lachgar A (2007) Angew Chem Int Ed 46:4995–4998

    Article  CAS  Google Scholar 

  14. Zhang JJ, Lachgar A (2015) Inorg Chem 54:1082–1090

    Article  CAS  PubMed  Google Scholar 

  15. Shamshurin MV, Mikhaylov MA, Sukhikh T, Benassi E, Tarkova AR, Prokhorikhin AA, Kretov EI, Shestopalov MA, Abramov PA, Sokolov MN (2019) Inorg Chem 58:9028–9035

    Article  CAS  PubMed  Google Scholar 

  16. Renaud A, Wilmet M, Truong TG, Seze M, Lemoine P, Dumait N, Chen W, Saito N, Ohsawa T, Uchikoshi T, Ohashi N, Cordier S, Grasset F (2017) J Mater Chem C 5:8160–8168

    Article  CAS  Google Scholar 

  17. Przychodzen P, Pelka R, Lewinski K, Supel J, Rams M, Tomala K, Sieklucka B (2007) Inorg Chem 46:8924–8938

    Article  CAS  PubMed  Google Scholar 

  18. Elahi SM, Raizada M, Sahu PK, Konar S (2021) Chem Eur J 27:5858–5870

    Article  CAS  PubMed  Google Scholar 

  19. Bajan B, Balzer G, Meyer HJ (1997) Z Anorg Allg Chem 623:1723–1728

    Article  CAS  Google Scholar 

  20. GADDS V4.1.14 General area detector diffraction system program for instrument control and data collection. BRUKER AXS Inc., Madison

  21. EVA V8.0 Graphics program for 2-dimensional data evaluation and presentation. BRUKER AXS Inc., Madison

  22. Shamshurin MV, Abramov PA, Mikhaylov MA, Sokolov MN (2022) J Struct Chem 63:81–86

    Article  CAS  Google Scholar 

  23. Gulyaeva RI, Petrovab SA, Chumarev VM, Selivanov EN (2020) J Alloys Comps 834:155153

    Article  CAS  Google Scholar 

  24. Khitrova VI, Klechkovskaya VV, Pinsker ZG (1967) Kristallografiya 12:1044

    CAS  Google Scholar 

  25. Rooksby HP, White EAD, Langston SA (1965) J Am Ceram Soc 48:447–449

    Article  CAS  Google Scholar 

  26. Ustimovich AB, Pinaeva MM, Kuznetsova VV, Vasil’ev VS (1977) Inorg Mater 13:120

    Google Scholar 

  27. Zhou HJ, Lachgar A (2007) Eur I Inorg Chem 8:1053–1066

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation under Grant Nos. DMR-0446763 and 0234489. We appreciate Dr. Cynthia Day for her continuous help in crystallography/data collection and wish her a happy retirement.

Author information

Authors and Affiliations

Authors

Contributions

Jian-Jun Zhang wrote the original manuscript. H. Andrew Zhou and Abdessadek Lachgar revised the manuscript. H. Andrew Zhou finalized the manuscript and all authors reviewed the manuscript.

Corresponding author

Correspondence to H. Andrew Zhou.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, JJ., Zhou, H.A. & Lachgar, A. Supramolecular Complexes Built of Octahedral [Ta6Cl12(CN)6]3−/4− Clusters and Terpyridine-Metal Complexes. J Chem Crystallogr 53, 299–306 (2023). https://doi.org/10.1007/s10870-022-00969-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00969-7

Keywords

Navigation