Skip to main content
Log in

Synthesis and Structure of Tetrahedral [Zn(maltol)2Cl2], Exhibiting Monodentate Coordination of Neutral Maltol

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Recrystallization of [Zn(malt)2(H2O)1.5] (malt = maltolato(-1), C6H5O3) from a concentrated aqueous solution acidified with HCl to pH 3.0 yielded colorless crystals of [Zn(Hmalt)2Cl2] (Hmalt = neutral maltol, C6H6O3). The Zn(II) site exhibits distorted tetrahedral coordination through bonding to two chloride ligands and to two neutral maltol ligands, each bonding through the ketonic oxygen. [Zn(Hmalt)2Cl2] is a unique example of a neutral monodentate coordination by the maltol ligand.

Graphical Abstract

A view of the tetrahedral [Zn(Hmalt)2Cl2] (Hmalt = neutral maltol, C6H6O3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Duan M, Li T, Liu B, Yin S, Zang J, Lv C, Zhao G, Zhang T (2021) Zinc Nutrition and Dietary Zinc Supplements. Crit. Rev. Food Sci. Nutr. 1–16.

  2. Bhatnagar S, Taneja S (2001) Zinc and cognitive development. Br J Nutr 85(S2):S139–S145

    Article  CAS  PubMed  Google Scholar 

  3. Ben-Ari Y, Cherubini E (1991) Zinc and GABA in developing brain. Nature 353:220

    Article  CAS  PubMed  Google Scholar 

  4. De Moura JE, De Moura ENO, Alves CX, De Lima Vale SH, Dantas MMG, De Araújo SA, Das Graças Almeida M, Leite LD, Brandão-Neto J (2013) Oral zinc supplementation may improve cognitive function in schoolchildren. Biol Trace Elem Res 155:23–28

    Article  PubMed  Google Scholar 

  5. Liu E, Pimpin L, Shulkin M, Kranz S, Duggan CP, Mozaffarian D, Fawzi WW (2018) Effect of zinc supplementation on growth outcomes in children under 5 years of age. Nutrients 10:1–20

    Article  Google Scholar 

  6. Dardenne M (2002) Zinc and immune function. Eur J Clin Nutr 56:S20–S23

    Article  CAS  PubMed  Google Scholar 

  7. Maret W, Sandstead HH (2006) Zinc requirements and the risks and benefits of zinc supplementation. J Trace Elem Med Biol 20:3–18

    Article  CAS  PubMed  Google Scholar 

  8. Koch AS, Chimento CA, Berg AN, Mughal FD, Spencer JP, Hovland DE, Mbadugha B, Hovland AK, Eller LR (2015) Extraction of Maltol from Fraser fir: a comparison of microwave-assisted extraction and conventional heating protocols for the organic chemistry laboratory. J Chem Educ 92:170–174

    Article  CAS  Google Scholar 

  9. Liboiron BD, Thompson KH, Hanson GR, Lam E, Aebischer N, Orvig C (2005) New insights into the interactions of serum proteins with bis(maltolato)oxovanadium(IV): transport and biotransformation of insulin-enhancing vanadium pharmaceuticals. J Am Chem Soc 127:5104–5115

    Article  CAS  PubMed  Google Scholar 

  10. Kaneko N, Yasui H, Takada J, Suzuki K, Sakurai H (2004) Orally administrated aluminum-maltolate complex enhances oxidative stress in the organs of mice. J Inorg Biochem 98:2022–2031

    Article  CAS  PubMed  Google Scholar 

  11. Bernstein LR, Tanner T, Godfrey C, Noll B (2000) Chemistry and pharmacokinetics of gallium maltolate, a compound with high oral gallium bioavailability. Met-Based Drugs 7:33–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Reffitt DM, Burden TJ, Seed PT, Wood J, Thompson RP, Powell JJ (2000) Assessment of iron absorption from ferric trimaltol. Ann Clin Biochem 37:457–466

    Article  CAS  PubMed  Google Scholar 

  13. Barret MC, Mahon MF, Molloy KC, Steed JW, Wright P (2001) Synthesis and structural characterization of tin(II) and zinc(II) derivatives of cyclic α-hydroxyketones, including the structures of Sn(maltol)2, Sn(tropolone)2, Zn(tropolone)2, and Zn(hinokitiol)2. Inorg Chem 40:4384–4388

    Article  CAS  PubMed  Google Scholar 

  14. Fawcett J, Russell DR, Burgess J, Ahmed S, Parsons SA, Laurie SH (2000) The structures of bis-maltolato-zinc(II) and of bis-3-hydroxy-1,2-dimethyl-4-pyridinonato-zinc(II) and -lead(II). Polyhedron 19:129–135

    Article  Google Scholar 

  15. Samejo MQ, Ndukwe GI, Burdi DK, Bhanger MI, Khan KM (2019) CCDC 1950545: experimental crystal structure determination. https://doi.org/10.5517/ccdc.csd.cc23gpt3

  16. Paraka KS, Lusi M, Bajpai A, Zaworotko MJ (2017) Crystal engineering approach to generate crystalline inclusion compounds in which 5-hydroxyisophthalic acid serves as a host. Cryst Growth Des 17:959–962

    Article  Google Scholar 

  17. ccdc.cam.ac.uk

  18. CrysAlisPro, version 171.41.116a; Rigaku Corporation: Oxford, UK, 2021.

  19. Sheldrick GM (2015) SHELXT, version 2018/2. Acta Crystallogr A 71:3–8

    Article  Google Scholar 

  20. Sheldrick GM (2015) SHELXL, version 2018/3. Acta Crystallogr C 71:3–8

    Article  Google Scholar 

  21. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) Olex2, version 1.3-ac4. J Appl Cryst 42:339–341

    Article  CAS  Google Scholar 

  22. CrystalMaker® : a crystal and molecular structures program. CrystalMaker Software Ltd., Oxford, England (www.crystalmaker.com).

  23. Yang L, Powell DR, Houser RP (2007) Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans. 955–64.

  24. Okuniewski A, Rosiak D, Chojnacki J, Becker B (2015) Coordination polymers and molecular structures among complexes of mercury(II) halides with selected 1-benzoylthioureas. Polyhedron 90:47–57

    Article  CAS  Google Scholar 

  25. Hryniewicz K, Stadnicka K, Pattek-Janczyk A (2009) Crystal structure and vibrational spectra of 2-chloromethyl-5-hydroxy-4H-pyran-4-one and 5-hydroxy-2-methyl-4H-pyran-4-one as potential ligands for Fe(III) complexes. J Mol Struc 919:255–270

    Article  CAS  Google Scholar 

  26. Burgess J, Fawcett J, Russell DR, Hider RC, Hossain MB, Stoner CR, van der Helm D (1996) Two polymorphic forms of 3-hydroxy-2-methyl-4h-pyran-4-one (Maltol). Acta Cryst C52:2917–2920

    CAS  Google Scholar 

Download references

Acknowledgements

The X-Ray diffractometer was purchased with funding from NSF MRI program grant CHE-1725028. RPD thanks Balchem Corporation, New Hampton, NY, USA for support used in part for this work. The work was funded in part through Distinguished Professor funding from Syracuse University College of Arts and Sciences to JZ.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jon Zubieta or Robert P. Doyle.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 412 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Case, D.R., Brennessel, W.W., Zubieta, J. et al. Synthesis and Structure of Tetrahedral [Zn(maltol)2Cl2], Exhibiting Monodentate Coordination of Neutral Maltol. J Chem Crystallogr 53, 177–183 (2023). https://doi.org/10.1007/s10870-022-00951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-022-00951-3

Keywords

Navigation