Skip to main content
Log in

Oral Zinc Supplementation May Improve Cognitive Function in Schoolchildren

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Zinc is an important micronutrient for humans, and zinc deficiency among schoolchildren is deleterious to growth and development, immune competence, and cognitive function. However, the effect of zinc supplementation on cognitive function remains poorly understood. The purpose of our study was to evaluate the effect of oral zinc supplementation (5 mg Zn/day for 3 months) on the Full Scale Intelligence Quotient (FSIQ), Verbal Intelligence Quotient (VIQ), and Performance Intelligence Quotient (PIQ) using a Wechsler Intelligence Scale for Children (WISC-III). We studied 36 schoolchildren aged 6 to 9 years (7.8 ± 1.1) using a nonprobability sampling method. The baseline serum zinc concentrations increased significantly after zinc supplementation (p < 0.0001), with no difference between sexes. Tests were administered under basal conditions before and after zinc supplementation, and there was no difference in FSIQ according to gender or age. The results demonstrated that zinc improved the VIQ only in the Information Subtest (p = 0.009), although the supplementation effects were more significant in relation to the PIQ, as these scores improved for the Picture Completion, Picture Arrangement, Block Design, and Object Assembly Subtests (p = 0.0001, for all subtests). In conclusion, zinc supplementation improved specific cognitive abilities, thereby positively influencing the academic performance of schoolchildren, even those without marginal zinc deficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brown KH, Wuehler SE, Peerson JM (2001) The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutr Bull 22:113–125

    Google Scholar 

  2. Black MM, Baqui AH, Zaman K, Persson LA, Arifeen SE, Le K, McNary SW, Parveen M, Hamadani JD, Black RE (2004) Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr 80:903–910

    PubMed  CAS  Google Scholar 

  3. Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. J Am Coll Nutr 28:257–265

    Article  PubMed  CAS  Google Scholar 

  4. Takeda A, Tamano H (2009) Insight into zinc signaling from dietary zinc deficiency. Brain Res Rev 62:33–44

    Article  PubMed  CAS  Google Scholar 

  5. Bhatnagar S, Taneja S (2001) Zinc and cognitive development. Br J Nutr 85:S139–S145

    Article  PubMed  CAS  Google Scholar 

  6. Georgieff MK (2007) Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 85:614S–620S

    PubMed  CAS  Google Scholar 

  7. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148

    Article  PubMed  CAS  Google Scholar 

  8. Takeda A, Takefuta S, Okada S, Oku N (2000) Relationship between brain zinc and transient learning impairment of adult rats fed zinc-deficient diet. Brain Res 859:352–357

    Article  PubMed  CAS  Google Scholar 

  9. Friel JK, Andrews WL, Mathew DJ, Long DR, Cornel AM, McKim MCD, Zerbe GO (1993) Zinc supplementation in very low birth weight infants. J Pediatr Gastroenterol Nutr 17:97–104

    Article  PubMed  CAS  Google Scholar 

  10. Ashworth A, Morris SS, Lira PIC, Grantham-McGregor SM (1998) Zinc supplementation mental development and behaviour in low birth weight term infants in northeast Brazil. Eur J Clin Nutr 52:223–227

    Article  PubMed  CAS  Google Scholar 

  11. Khor GL, Misra S (2012) Micronutrient interventions on cognitive performance of children aged 5–15 years in developing countries. Asia Pac J Clin Nutr 21:476–486

    PubMed  CAS  Google Scholar 

  12. Bryan J, Osendarp S, Hughes D, Calvaresi E, Baghurst K, van Klinken JW (2004) Nutrients for cognitive development in school-aged children. Nutr Rev 62:295–306

    Article  PubMed  Google Scholar 

  13. Gogia S, Sachdev HS (2012) Zinc supplementation for mental and motor development in children. Cochrane Database Syst Rev 12:CD007991. doi:10.1002/14651858.CD007991.pub2

    PubMed  Google Scholar 

  14. Murray-Kolb LE, Khatry SK, Katz J, Schaefer BA, Cole PM, LeClerq SC, Morgan ME, Tielsch JM, Christian P (2012) Preschool micronutrient supplementation effects on intellectual and motor function in school-aged Nepalese children. Arch Pediatr Adolesc Med 166:404–410

    Article  PubMed  Google Scholar 

  15. Marshall WA, Tanner JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44:291–303

    Article  PubMed  CAS  Google Scholar 

  16. Marshall WA, Tanner JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45:13–23

    Article  PubMed  CAS  Google Scholar 

  17. Leite LD, Rocha EDM, Almeida MG, Rezende AA, Silva CA, França MC, Marchini JS, Brandao-Neto J (2009) Sensitivity of zinc kinetics and nutritional assessment of children submitted to venous zinc tolerance test. J Am Coll Nutr 28:405–412

    Article  PubMed  CAS  Google Scholar 

  18. Lowe NM, Fekete K, Decsi T (2009) Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr 89:2040S–2051S

    Article  PubMed  CAS  Google Scholar 

  19. Wechsler D (2002) Wechsler Intelligence Scale for Children—WISC-III: manual. Casa do Psicólogo, São Paulo

  20. Gardner JMM, Powell CA, Baker-Henningham H, Walker SP, Cole TJ, Grantham-McGregor SM (2005) Zinc supplementation and psychosocial stimulation: effects on the development of undernourished Jamaican children. Am J Clin Nutr 82:399–405

    PubMed  CAS  Google Scholar 

  21. Manger MS, McKenzie JE, Pattanee W, Andrew G, Visith C, Tippawan P, Sueppong G, Bruce R, Emorn W, Gibson RS (2008) A micronutrient-fortified seasoning powder reduces morbidity and improves short-term cognitive function, but has no effect on anthropometric measures in primary school children in northeast Thailand: a randomized controlled trial. Am J Clin Nutr 87:1715–1722

    PubMed  CAS  Google Scholar 

  22. Prasad AS (2012) Discovery of human zinc deficiency: 50 years later. J Trace Elem Med Biol 26:66–69

    Article  PubMed  CAS  Google Scholar 

  23. Hamadani JD, Fuchs GJ, Osendarp SJM, Khatun F, Huda SN, Grantham-McGregor SM (2001) Randomized controlled trial of the effect of zinc supplementation on the mental development of Bangladeshi infants. Am J Clin Nutr 74:381–386

    PubMed  CAS  Google Scholar 

  24. Siegel EH, Kordas K, Stoltzfus RJ, Katz J, Khatry SK, LeClerq SC, Tielsch JM (2011) Inconsistent effects of iron-folic acid and/or zinc supplementation on the cognitive development of infants. J Health Popul Nutr 29:593–604

    PubMed  Google Scholar 

  25. Gibson RS, Vanderkooy PDS, MacDonald AC, Goldman A, Ryan BA, Berry M (1989) A growth-limiting, mild zinc-deficiency syndrome in some Southern Ontario boys with low height percentiles. Am J Clin Nutr 49:1266–1273

    PubMed  CAS  Google Scholar 

  26. Cavan KR, Gibson RS, Grazioso CF, Isalgue MA, Ruz M, Solomons NW (1993) Growth and body composition of periurban Guatemalan children in relation to zinc status: a longitudinal zinc intervention trial. Am J Clin Nutr 57:344–352

    PubMed  CAS  Google Scholar 

  27. Sandstead HH, Penland JG, Alcok NW, Dayal HH, Chen XC, Li JS, Zhao F, Yang JJ (1998) Effects of repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children. Am J Clin Nutr 68:470S–475S

    PubMed  CAS  Google Scholar 

  28. Taras H (2005) Nutrition and student performance at school. J Sch Health 75:199–213

    PubMed  Google Scholar 

  29. Kordas K, Stoltzfus RJ (2004) New evidence of iron and zinc interplay at the enterocyte and neural tissues. J Nutr 134:1295–1298

    PubMed  CAS  Google Scholar 

  30. Takeda A (2001) Zinc homeostasis and functions of zinc in the brain. Biometals 14:343–351

    Article  PubMed  CAS  Google Scholar 

  31. Best C, Neufingerl N, Del Rosso JM, Transler C, van den Briel T, Osendarp S (2011) Can multi-micronutrient food fortification improve the micronutrient status, growth, health, and cognition of schoolchildren? A systematic review. Nutr Rev 69:186–204

    Article  PubMed  Google Scholar 

  32. The NEMO Study Group (2007) Effect of a 12-mo micronutrient intervention on learning and memory in well-nourished and marginally nourished school-aged children: 2 parallel, randomized, placebo-controlled studies in Australia and Indonesia. Am J Clin Nutr 86:1082–1093

    Google Scholar 

  33. Hermoso M, Vucic V, Vollhardt C, Arsic A, Roman-Viñas B, Iglesia-Altab I, Gurinovic M, Berthold Koletzko B (2011) The effect of iron on cognitive development and function in infants, children and adolescents: a systematic review. Ann Nutr Metab 59:154–165

    Article  PubMed  CAS  Google Scholar 

  34. Antunes MFR, Leite LD, Rocha EDM, Brito NJN, França MC, Silva CAB, Almeida MG, Rezende AA, Marchini JS, Brandão-Neto J (2010) Competitive interaction of zinc and iron after venous and oral zinc administration in eutrophic children. Trace Elem Electrolytes 27:185–191

    CAS  Google Scholar 

  35. Wainwright PE, Colombo J (2006) Nutrition and the development of cognitive functions: interpretation of behavioral studies in animals and human infants. Am J Clin Nutr 84:961–970

    PubMed  CAS  Google Scholar 

  36. Suh SW, Won SJ, Hamby AM, Fan Y, Sheline CT, Tamano H, Takeda A, Liu J (2009) Decreased brain zinc availability reduces hippocampal neurogenesis in mice and rats. J Cereb Blood Flow Metab 29:1579–1588

    Article  PubMed  CAS  Google Scholar 

  37. Sandstead HH (2012) Subclinical zinc deficiency impairs human brain function. J Trace Elem Med Biol 26:70–73. doi:10.1016/j.jtemb.2012.04.018

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Council for Scientific and Technological Development (CNPq), grant no. 471795/2010-0.

Conflict of Interest

The authors report no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Brandão-Neto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Moura, J.E., de Moura, E.N.O., Alves, C.X. et al. Oral Zinc Supplementation May Improve Cognitive Function in Schoolchildren. Biol Trace Elem Res 155, 23–28 (2013). https://doi.org/10.1007/s12011-013-9766-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-013-9766-9

Keywords

Navigation