Skip to main content

Advertisement

Log in

Stabilization of the DMSO Solvate of 2-Chloro-5-nitrobenzoic acid (Mesalazine Impurity M) by Bifurcated Hydrogen Bonds: Crystallographic, Spectroscopic, Thermal and Computational Studies

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript
  • 3 Altmetric

Abstract

The strategy for choosing the optimal solvent DMSO to produce the solvate of Mesalazine impurity M is demonstrated and the possibility of selective crystallization as a means to remove the impurity from the drug substance is proposed. The single crystal XRD was undertaken to identify molecular interactions that take place to compensate for the unsatisfied arrangement of hydrogen bonds in the supramolecular architecture. Interestingly, formation of O–H⋯S, O–H⋯O, and C–H⋯O connections leads to loop/ring motifs stabilizing the crystal entity. In the present study, purification of the drug molecule remains a chief objective for future investigations, since crystallization of Mesalazine impurity M alone cannot conclusively guarantee separation of impurity.

Graphical Abstract

The present work emphasized hydrogen bonding interactions that play an important role in the supramolecular assembly of DMSO solvate of the Mesalazine impurity M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

CIF:

Crystallographic information file

CSD:

Cambridge structural database

CNBA:

2-Chloro-5-nitrobenzoic acid

DMSO:

Dimethyl sulfoxide

Mp:

Melting point

MEP:

Molecular electrostatic potential

References

  1. Jeličić ML, Brusač E, Klarić DA, Nigović B, Keser S, Mornar A (2020) Physicochemical compatibility investigation of Mesalazine and folic acid using chromatographic and thermoanalytical techniques. Pharmaceuticals 13:187

    Article  CAS  Google Scholar 

  2. Likhitha U, Narayana B, Sarojini BK, Lobo AG, Sharma G, Pathania S, Kant R (2019) Do hydrogen bonding and noncovalent interactions stabilize nicotinamide-picric acid cocrystal supramolecular assembly? J Mol Struct 1195:827–838. https://doi.org/10.1016/j.molstruc.2019.06.037

    Article  CAS  Google Scholar 

  3. Likhitha U, Narayana B, Sarojini BKK, Madan Kumar S, Lobo AGAG, Karthick T (2020) A study on interwoven hydrogen bonding interactions in new zidovudine-picric acid (1:1) cocrystal through single crystal XRD, spectral and computational methods. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.128052

    Article  Google Scholar 

  4. Gotoh K, Ishida H (2009) Hydrogen-bonded structures of the isomeric compounds of quinoline with 2-chloro-5-nitro-benzoic acid, 3-chloro-2-nitro-benzoic acid, 4-chloro-2-nitro-benzoic acid and 5-chloro-2-nitro-benzoic acid. Acta Crystallogr Sect C Cryst Struct Commun 65:534–538. https://doi.org/10.1107/S0108270109037688

    Article  CAS  Google Scholar 

  5. Gotoh K, Ishida H (2020) Crystal structures of four isomeric hydrogen-bonded co-crystals of 6-methyl­quinoline with 2-chloro-4-nitro­benzoic acid, 2-chloro-5-nitro­benzoic acid, 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid. Acta Crystallogr Sect E Crystallogr Commun 76:1701–1707. https://doi.org/10.1107/S2056989020013134

    Article  CAS  Google Scholar 

  6. Bairagi KM, Pal P, Bhandary S, Venugopala KN, Chopra D, Nayak SK (2019) Crystal structure of a 1:1 cocrystal of nicotinamide with 2-chloro-5-nitrobenzoic acid. Acta Crystallogr Sect E Crystallogr Commun 75:1712–1718. https://doi.org/10.1107/S2056989019013859

    Article  CAS  Google Scholar 

  7. Ishida H, Rahman B, Kashino S (2001) 2:1 Complexes of 2-chloro-4-nitro- benzoic acid and 2-chloro-5-nitro-benzoic acid with pyrazine. Acta Crystallogr Sect C Cryst Struct Commun C57:876–879. https://doi.org/10.1107/S0108270101007016

    Article  CAS  Google Scholar 

  8. Scheepers MC, Lemmerer A (2020) Synthesis and characterization of a series of Sulfamethazine multicomponent crystals with various Benzoic acids. Cryst Growth Des 20:813–823. https://doi.org/10.1021/acs.cgd.9b01209

    Article  CAS  Google Scholar 

  9. Berzins A, Kons A, Saršū Ns K, Belyakov S, Actiņš A (2020) On the rationalization of formation of solvates: experimental and computational study of solid forms of several nitrobenzoic acid derivatives. Cryst Growth Des 20:5767–5784. https://doi.org/10.1021/acs.cgd.0c00331

    Article  CAS  Google Scholar 

  10. Sugiyama T, Meng J, Matsuura T (2002) Intermolecular interactions and generation of chirality in the formation of two-component molecular crystals between chloronitrobenzoic acids and 4-benzoylpyridine. J Mol Struct 611:53–64. https://doi.org/10.1080/1058725090191794

    Article  CAS  Google Scholar 

  11. Sugiyama T, Meng J, Matsuura T (2002) Generation of chirality by the aggregation of column structures for two-component molecular crystals composed of Chloronitrobenzoic acids and p-Anisidine. Enantiomer A J Sterochem 7:397–404. https://doi.org/10.1080/10242430215703

    Article  CAS  Google Scholar 

  12. Yang P, Qin C, Du S, Jia L, Qin Y, Gong J, Wu S (2019) Crystal structure, stability and desolvation of the solvates of sorafenib tosylate. Curr Comput-Aided Drug Des 9:1–14. https://doi.org/10.3390/cryst9070367

    Article  CAS  Google Scholar 

  13. Likhitha U, Narayana B, Sarojini BK, Madan Kumar S, Karthick T (2021) Crystallographic and theoretical interpretation of supramolecular architecture in a new salt hydrate of DL-tartaric acid and dimethylamine (DLTA-DA). J Mol Struct 1225:129284. https://doi.org/10.1016/j.molstruc.2020.129284

    Article  CAS  Google Scholar 

  14. Chand A, Chowdhuri S (2016) Effects of dimethyl sulfoxide on the hydrogen bonding structure and dynamics of aqueous N-methylacetamide solution. J Chem Sci 128:991–1001. https://doi.org/10.1007/s12039-016-1092-2

    Article  CAS  Google Scholar 

  15. Ranneh NFS, Hamid YM, Goh S, Abdulwahid Y (2019) Dimethyl sulfoxide and their toxicity. Int J Res Biol Pharm 5:1–18

    Google Scholar 

  16. Gildenhuys J, Roex T, Le; Egan, T.J., De Villiers, K.A. (2013) The single crystal X-ray structure of β-hematin DMSO solvate grown in the presence of chloroquine, a β-hematin growth-rate inhibitor. J Am Chem Soc 135:1037–1047. https://doi.org/10.1021/ja308741e

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Brychczynska M, Davey RJ, Pidcock E (2012) A study of dimethylsulfoxide solvates using the Cambridge Structural Database (CSD). CrystEngComm 14:1479–1484. https://doi.org/10.1039/c1ce05464c

    Article  CAS  Google Scholar 

  18. Dutkiewicz G, Siddaraju BP, Yathirajan HS, Narayana B, Kubicki M (2010) The crystal structure of fluphenazinium dipicrate dimethylsulphoxide solvate. J Chem Crystallogr 40:970–974. https://doi.org/10.1007/s10870-010-9773-z

    Article  CAS  Google Scholar 

  19. Fun HK, Hemamalini M, Siddaraju BP, Yathirajan HS, Narayana B (2010) Bis[4-(4-chlorophenyl)-4-hydroxy-piperidinium] dipicrate dimethyl sulfoxide solvate. Acta Crystallogr Sect E Struct Rep Online 66:o1212–o1213. https://doi.org/10.1107/S1600536810015187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Thomas R, Shoemaker CB, Eriks K (1966) The molecular and crystal structure of dimethyl sulfoxide. Acta Crystallogr 21:12–20. https://doi.org/10.1107/s0365110x66002263

    Article  CAS  Google Scholar 

  21. De Abreu Costa L, Ottoni MHF, Dos Santos MG, Meireles AB, De Almeida VG, De Fátima Pereira W, De Avelar-Freitas BA, Brito-Melo GEA (2017) Dimethyl sulfoxide (DMSO) decreases cell proliferation and TNF-α, IFN-, and IL-2 cytokines production in cultures of peripheral blood lymphocytes. Molecules 22:1–10. https://doi.org/10.3390/molecules22111789

    Article  CAS  Google Scholar 

  22. Boryczka S, Michalik E, Jastrzebska M, Kusz J, Zubko M, Bȩbenek E (2012) X-ray crystal structure of betulin-DMSO solvate. J Chem Crystallogr 42:345–351. https://doi.org/10.1007/s10870-011-0251-z

    Article  CAS  Google Scholar 

  23. Mohamed SK, Mague JT, Akkurt M, El-Emary TI, Albayati MR (2016) 3-[2-(9H-Carbazol-9-yl)ethyl]-4-phenyl-1H-1,2,4-triazole-5(4H)-thione dimethyl sulfoxide monosolvate. IUCrData 1:1–3. https://doi.org/10.1107/s2414314616018356

    Article  CAS  Google Scholar 

  24. Hassan IN, Wan Daud WR, Yamin BM, Kassim MB (2011) (E)-2-(3-Cinnamoylthioureido)acetic acid dimethyl sulfoxide disolvate. Acta Crystallogr Sect E Struct Rep Online 67:o2686–o2687. https://doi.org/10.1107/S1600536811036750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Andeme Edzang J, Chen Z, Audi H, Canard G, Siri O (2016) Transamination at the crossroad of the one-pot synthesis of N-substituted quinonediimines and C-substituted benzobisimidazoles. Org Lett 18:5340–5343. https://doi.org/10.1021/acs.orglett.6b02640

    Article  PubMed  CAS  Google Scholar 

  26. Hsi KHY, Chadwick K, Fried A, Kenny M, Myerson AS (2012) Separation of impurities from solution by selective co-crystal formation. CrystEngComm 14:2386–2388. https://doi.org/10.1039/c1ce06358h

    Article  CAS  Google Scholar 

  27. Desiraju GR (2002) Hydrogen bridges in crystal engineering: Interactions without borders. Acc Chem Res 35:565–573. https://doi.org/10.1021/ar010054t

    Article  PubMed  CAS  Google Scholar 

  28. Massimo M (2020) The Cambridge Structural Database in chemical education: analysis of hydrogen-bonded networks in salts of hexaaqua metal ions with organic counter-ions. J Appl Crystallogr 53:1593–1602. https://doi.org/10.1107/S1600576720013035

    Article  Google Scholar 

  29. Rigaku Crystal Clear SM Expert 2.0 r15 (2011) Software for data collection and processing. Rigaku Corp.

  30. Oxford Diffraction (2010) Crys Alis. PRO; Oxford Diffraction Ltd: Yarnton Oxfordshire, England

  31. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr Sect A Found Crystallogr 64:112–122. https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  32. Sheldrick GM (2016) A program for crystal structure refinement release. In: SHELXL-2016, pp 97–92

  33. Spek AL (2009) Multipurpose crystallographic tool, the program PLATON. Acta Crystallogr Sect D Biol Crystallogr D65:148–155

    Article  CAS  Google Scholar 

  34. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, Van De Streek J, Wood PA (2008) Mercury CSD 2.0—new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  35. MacRae CF, Sovago I, Cottrell SJ, Galek PTA, McCabe P, Pidcock E, Platings M, Shields GP, Stevens JS, Towler M et al (2020) Mercury 4.0: From visualization to analysis, design and prediction. J Appl Crystallogr 53:226–235. https://doi.org/10.1107/S1600576719014092

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Alagona G, Ghio C, Kollman P (1983) Bifurcated vs. linear hydrogen bonds: dimethyl phosphate and formate anion interactions with water. J Am Chem Soc 105:5226–5230. https://doi.org/10.1021/ja00354a008

    Article  CAS  Google Scholar 

  37. Hughes DS, Delori A, Rehman A, Jones W (2017) Using crystallography, topology and graph set analysis for the description of the hydrogen bond network of triamterene: a rational approach to solid form selection. Chem Cent J 11:1–19. https://doi.org/10.1186/s13065-017-0293-1

    Article  CAS  Google Scholar 

  38. Likhitha U, Narayana B, Sarojini BK (2019) Crystal packing analysis of picric acid, phthalazone and their cocrystal using hirshfeld computational studies. Adv Mater Proc 4:136–138. https://doi.org/10.5185/amp.2019.0013

    Article  Google Scholar 

  39. McKinnon JJ, Mitchell AS, Spackman MA (1998) Hirshfeld surfaces: a new tool for visualising and exploring molecular crystals. Chem Eur J 4:2136–2141. https://doi.org/10.1002/(SICI)1521-3765(19981102)42-G

    Article  CAS  Google Scholar 

  40. Prasad AA, Meenakshisundaram SP (2015) Hydrogen-bonded supramolecular architecture in nonlinear optical ammonium 2,4-dinitrophenolate hydrate. J Appl Crystallogr 48:844–852. https://doi.org/10.1107/S1600576715006445

    Article  CAS  Google Scholar 

  41. Ferguson GA, Sim G (1962) X-ray studies of molecular overcrowding. Part IV. The crystal and molecular structure of 2-Chloro-5-nitrobenxoic acid. Acta Crystallogr 15:1767–1775

    Article  Google Scholar 

  42. Bē Rziņš A, Kons A, Saršū Ns K, Belyakov S, Actiņš A (2020) On the rationalization of formation of solvates: experimental and computational study of solid forms of several nitrobenzoic acid derivatives. Cryst Growth Des 20:5767–5784. https://doi.org/10.1021/acs.cgd.0c00331

    Article  CAS  Google Scholar 

Download references

Acknowledgements

UL thanks DST-PURSE Lab, Mangalore University and Nitte University Centre for Science Education and Research, Mangaluru for structural analysis and microphotographs. BN acknowledges UGC for financial support through the BSR one-time Grant (SR/S/Z/-23/2010/32) for the purchase of chemicals. MKS acknowledges IOE and DST-PURSE, Vijnana Bhavan, University of Mysore, Mysuru. UL also thank Anupam G. Lobo for helping in Hirshfeld surfaces analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Narayana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Likhitha, U., Narayana, B., Sarojini, B.K. et al. Stabilization of the DMSO Solvate of 2-Chloro-5-nitrobenzoic acid (Mesalazine Impurity M) by Bifurcated Hydrogen Bonds: Crystallographic, Spectroscopic, Thermal and Computational Studies. J Chem Crystallogr 52, 276–286 (2022). https://doi.org/10.1007/s10870-021-00913-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00913-1

Keywords

Navigation