Skip to main content
Log in

Copper(I) Derivative of Pyridine-3-carbaldehyde-N-ethylthiosemicarbazone and Triphenylphosphine—First Case of Crystal Structure Study

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The synthesis and crystal structure of pyridine-3-carbaldehyde-N-ethylthiosemicarbazone (3-pytscH-NHEt) 1, and its CuI complex of stoichiometry, [CuCl(3-pytscH-NHEt)(PPh3)2] 2, studied using single crystal X-ray crystallography, are reported in this paper. Crystal data: 1, monoclinic, P21/n, a = 6.6322(3), b = 21.1200(8), c = 7.2989(3) Å; β = 91.883(4), T = 173(2), R factor = 0.0457; 2: triclinic, P-1, a = 19.3600(5), b = 20.6241(6), c = 23.8015(6) Å,α = 92.647(2), β = 104.388(2), γ = 114.377(3), R factor = 0.0662. The thio-ligand, as a neutral entity, is coordinating to Cu through its S donor atom in complex 2. It has exhibited an unusual feature of forming four independent molecules (A, B, C, D) in the unit cell, with minor differences in the bond angles / distances / torsion angles. The geometry of each molecule of 2 is distorted tetrahedral. Crystal packing, as well as Infrared, electronic absorption and proton NMR spectroscopic studies, are also reported. Copper compound 2 represents the first example of a structurally studied copper coordination compound of 3-pyridyl based thiosemicarbazones.

Graphical Abstract

Copper(I) chloride with pyridine-3-carbaldehyde-N-ethylthiosemicarbazone and PPh3 in CH3CN yielded a copper compound, 2 (Green-Cl, blue-N; aqua-Cu, orange-S, magneta-P).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mydhili SP, Sireesha B, Reddy CVR (2016) J Chem Pharm Res 8:78

    CAS  Google Scholar 

  2. El-Ayaan UJ (2012) J Coord Chem 65:629

    Article  CAS  Google Scholar 

  3. Heloisa B, Nacif WF, Teixeira LR, Reboucas JS (2002) Transition Met Chem 27:85

    Article  Google Scholar 

  4. Refat MS, Ibrahim HK, Sowellim SZA, Soliman MH, Saeed EM (2009) J Inorg Organomet Polym 19:521

    Article  CAS  Google Scholar 

  5. Refat MS, El-Deen IM, Zein MA, Adam AMA, Kobeasy MI (2013) Int J Electrochem Sci 8:9894

    CAS  Google Scholar 

  6. Carballo R, Casas JS, Garcia-Martinez E, Pereiras-Gabian G, Sanchez A, Abram U (2005) Cryst Eng Comm 7:113

    Article  CAS  Google Scholar 

  7. Pereiras-Gabian G, Vazquez-Lopez EM, Braband H, Abram U (2005) Inorg Chem 44:834

    Article  CAS  Google Scholar 

  8. Mendes IC, Teixeira LR, Lima R, Beraldo H, Speziali NL, West DX (2001) J Mol Struct 559:355

    Article  CAS  Google Scholar 

  9. Beraldo H, Lima R, Teixeira LR, Moura AA, West DX (2001) J Mol Struct 559:99

    Article  CAS  Google Scholar 

  10. Beraldo H, Lima R, Teixeira LR, Moura AA, West DX (2000) J Mol Struct 553:43

    Article  CAS  Google Scholar 

  11. Lobana TS, Sharma R, Bawa G, Khanna S (2009) Coord Chem Rev 253:977

    Article  CAS  Google Scholar 

  12. Lobana TS, Sharma R, Butcher RJ, Castineiras A, Bermejo E, Bharatam PV (2006) Inorg Chem 45:1535–1542

    Article  CAS  Google Scholar 

  13. Lobana TS, Sharma R, Castiñeiras A, Butcher RJ (2010) Z Anorg Allg Chem 63:2698–2703

    Article  Google Scholar 

  14. Brauer G (1965) Handbook of Preparative Chemistry, vol 2. Academic Press, New York

    Google Scholar 

  15. Andersen FE, Duca CJ, Scudi JV (1951) J Am Chem Soc 73:4967–4968

    Article  Google Scholar 

  16. Tobias RS, Ogrins I, Nervett BA (1962) Inorg Chem 1:638

    Article  CAS  Google Scholar 

  17. Lobana TS, Sanchez A, Casas JS, Castineiras A, Sordo J, Garcia-Tasende MS, Vazquez-Lopez EM (1997). J Chem Soc Dalton Trans. https://doi.org/10.1039/A703726K

    Article  Google Scholar 

  18. Klayman DL, Bartosevich JF, Griffin TS, Mason CJ, Scovill JP (1979) J Med Chem 22:855

    Article  CAS  Google Scholar 

  19. Sheldrick GM (2008) Acta Cryst A46:112

    Article  Google Scholar 

  20. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Crystallogr 42:339

    Article  CAS  Google Scholar 

  21. Sheldrick GM (2015) Acta Cryst C71:3

    Google Scholar 

  22. Huheey JE, Keiter EA, Keiter RL (1993) Inorganic Chemistry: Principles of Structure and Reactivity, 4th edn. Harper Collins College Publishers, New York

    Google Scholar 

Download references

Funding

Financial assistance from the Council of Scientific and Industrial Research, New Delhi for SRF to Mani (Sanction letter No.: 09/254(0291)/2019-EMR-I) is gratefully acknowledged. TSL thanks The Guru Nanak Dev University for appointing Honorary Professor/ JPJ acknowledges the NSF–MRI program (Grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarlok Singh Lobana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobana, T.S., Kaushal, M., Kumar, A. et al. Copper(I) Derivative of Pyridine-3-carbaldehyde-N-ethylthiosemicarbazone and Triphenylphosphine—First Case of Crystal Structure Study. J Chem Crystallogr 52, 233–241 (2022). https://doi.org/10.1007/s10870-021-00911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-021-00911-3

Keywords

Navigation