Skip to main content
Log in

Synthesis, Crystal Structures, Hydrogen Bonds and Antibacterial Activity of New Quinoline Derivatives

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Two new quinolines derivatives where crystallized from the acetylation reaction in low temperature ; between Baylis–Hillman products which had themselves been prepared from the Meth Cohn method and catalyzed by 1,4-diazabicyclo (Fatiha et al. in J Chem Crystallogr 42:989–996, 2012) octane and silicon dioxide or in pyridine and chloroform. Chemical structures have been established by spectral techniques of FTIR, 1H NMR and X-ray single crystal in low temperature. The crystal structure of (1a) crystallizes in triclinic space group P-1, a = 7.9145(12) Å, b = 9.1412(11) Å, c = 10.7286(16) Å, α = 94.760(11)°, β = 105.988(13)° , γ = 101.818(11)°, while (2a) crystallizes in orthorhombic non- centrosymmetric space group Pna21, a = 7.7237(12) Å, b = 20.2539(28) Å, c = 8.7164(12) Å, and its cohesion was found to be assured by O–H···O and C–H···O hydrogen bonds. Antimicrobial activity (in vitro) was evaluated by Gram-positive and Gram-negative bacteria. The compounds have shown good biological activity with Gram-positive bacteria (Staphylococcus aurous and Staphylococcus coagulase-negative).

Graphical Abstract

Two new Quinoline derivatives have been prepared with good products yields; these products constitute original compounds, of great interest biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Michael JP (1997) Nat Prod Rep 14:605

    Article  CAS  Google Scholar 

  2. Fatiha G, Amani D, Mohammed L, Nourredine B (2012) J Chem Crystallogr 42:989–996

    Article  Google Scholar 

  3. Levy S, Azoulay SJ (1994) Cardiovas Electrophysiol 5:635–636

    Article  CAS  Google Scholar 

  4. Wenckebach KF (1923) JAMA 81:472–474

    Article  Google Scholar 

  5. Roma G, Braccio MD, Grossi G, Mattioli F, Ghia H (2000) Eur J Med Chem 35:1021–1035

    Article  CAS  Google Scholar 

  6. Bilker O, Lindo V, Panico M, Etiene AE, Paxton T, Dell A, Rogers M, Sinden RE, Morris HR (1998) Nature 392:289–292

    Article  Google Scholar 

  7. Vargas LY, Castelli MV, Kouznetsov VV, Urbina JM, Lopez SN, Sortino M, Enriz RD, Ribas JC, Zacchino S (2003) Bioorg Med Chem 11:1531–1550

    Article  Google Scholar 

  8. Phan LT, Jian T, Chen Z, Qiu Y-L, Wang Z, Beach T, Polemeropoulos A, Or YS (2004) J Med Chem 47:2965–2968

    Article  CAS  Google Scholar 

  9. Fang K-C, Chen Y-L, Sheu J-Y, Wang T-C, Tzeng C-C (2000) J Med Chem 43:3809–3812

    Article  CAS  Google Scholar 

  10. Bailly C, Laine W, Baldeyrou B, De Pauw-Gillet M-C, Colson P, Houssier C, Cimanga K, Miert SV, Vlietinck AJ, Pieters L (2000) Anti-Cancer Drug Des 15:191–201

    CAS  Google Scholar 

  11. Dassonneville L, Bonjean K, De Pauw-Gillet M-C, Colson P, Houssier C, Quetin-Leclercq J, Angenot L, Ablordeppey SY (2002) Bioorg Med Chem 10:1337–1346

    Article  Google Scholar 

  12. Khan MTH (2007) Quinoline analogs as antiangiogenic agents and telomerase inhibitors. In: Khan MTH, Gupta R (eds) Bioactive heterocycles V.R. Springer, Berlin Top Heterocycl Chem 11:213–229

    Chapter  Google Scholar 

  13. Cheng X-M, Lee C, Klutchko S, Winters T, Reynolds EE, Welch KM, Flynn MA, Doherty AM (1996) Bioorg Med Chem 6:2999

    Article  CAS  Google Scholar 

  14. Anzini M, Cappelli A, Vomero S, Giorgi G, Langer T, Hamon M, Merahi N, Emerit BM, Cagnotto A, Skorupska M, Mennini T, Pinto JC (1995) J Med Chem 38:2692

    Article  CAS  Google Scholar 

  15. Giardina GAM, Sarau HM, Farina C, Medhurst AD, Grugni M, Raveglia LF, Schmidt DB, Rigolio R, Luttmann M, Vecchietti V, Hay DWP (1997) J Med Chem 50:1794

    Article  Google Scholar 

  16. Holla BS, Mahalinga M, Karthikeyan MS, Akberalib PM, Shettyc NS (2006) Bioorg Med Chem 14:2040–2047

    Article  CAS  Google Scholar 

  17. Całus S, Gondek E, Danel A, Jarosz B, Pokładko M, Kityk AV (2007) Mater Lett 61:3292–3295

    Article  Google Scholar 

  18. Baylis AB, Hillman MED (1972) German patent, 21155113. Chem Abstr 77:34174

    Google Scholar 

  19. Meth Cohn O, Narine B, Tarnowski B (1981) J Chem Soc Perkin Trans 1:1520–1530

    Article  Google Scholar 

  20. Narender P, Srinivas U, Gangadasu B, Biswas S, Jayathirtha Rao V (2005) Bioorg Med Chem Lett 15:5378–5381

    Article  CAS  Google Scholar 

  21. Oxford Diffraction (2006) Xcalibur CCD system, CrysAlis Software system, Version 1.171. Oxford Diffraction Ltd., Abington

  22. Farrugia LJ (1999) J Appl Crystallogr 32:837–838

    Article  CAS  Google Scholar 

  23. Burla MC, Caliandro R, Camalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Spagna R (2005) J Appl Crystallogr 38:381–388

    Article  CAS  Google Scholar 

  24. Sheldrick GM (1997) SHELXL97. University of Göttingen, Germany

    Google Scholar 

  25. Farrugia LJ (1997) J Appl Crystallogr 30:565

    Article  CAS  Google Scholar 

  26. Bruno IJ, Cole JC, Edgington PR, Kessler M, Macrae CF, McCabe P, Pearson J, Taylor R (2002) Acta Cryst B58:389–397

    Article  CAS  Google Scholar 

  27. Spek AL (2003) J Appl Crystallogr 36:7–13

    Article  CAS  Google Scholar 

  28. Grayer RJ, Harbone JB (1994) Photochemistry 73:19

    Article  Google Scholar 

  29. Irob ON, Moo-Young M, Anderson WA (1996) Int J Pharmacol 34:87

    Article  Google Scholar 

  30. Kalkhambkar RG, Kulkarni GM, Hwang WS, Lee CS (2008) Acta Cryst E 64:o258

    Article  CAS  Google Scholar 

  31. Benzerka S, Bouraiou A, Bouacida S, Debache A, Belfaitah A (2008) Acta Cryst E 64:o2115–o2116

    Article  CAS  Google Scholar 

  32. Insuasty B, Torres H, Cobo J, Lowd JN, Gilidewell C (2006) Acta Cryst C 62:O39–O41

    Article  Google Scholar 

  33. Jasinski JP, Bucher RJ, Mayekar AN, Yathirajan HS, Narayama B, Sarojini BK (2010) J Mol Struc 980:172–181

    Article  CAS  Google Scholar 

  34. Sayed MA, Zayed MA, Gehad GM (2010) Arab. J. Chem 3:103–113

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge The Tassili Programme N° 15MDU940 for the financial support. In addition, A.M and T.D acknowledge the help and advice of M.R.Y.El-Hillou (Université Larbi Ben Mhidi Oum El Bouaghi).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amel Messai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djemel, T., Messai, A., Luneau, D. et al. Synthesis, Crystal Structures, Hydrogen Bonds and Antibacterial Activity of New Quinoline Derivatives. J Chem Crystallogr 45, 300–309 (2015). https://doi.org/10.1007/s10870-015-0595-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-015-0595-x

Keywords

Navigation