Skip to main content
Log in

Hydrazone analogs as DNA gyrase inhibitors and antioxidant agents: Structure-activity relationship and pharmacophore modeling

  • REGULAR ARTICLE
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we report the synthesis and the structure–activity relationship study of three hydrazone analogs; the Schiff base hydrazone SBH and 2, 4-dinitrophenylhydrazones H1 & H2 derived from (E)-chalcones, to identify the active fragment of each structure. This identification has been carried out following in vitro biological evaluation, which revealed that the analogs H1 and H2 showed significant antibacterial activity due to their (E)-chalcone fragments characterized by proton NMR data and demonstrated by the docked view with emphasis on the involvement of these moieties in the interaction with the DNA gyrase, and thus contributes to the pharmacophore modeling. At the same time, SBH exhibited the highest free radical DPPH scavenging power associated with hydrogen bonding and conjugated push−pull chromophores, which were elucidated by reported vibrational assignments and absorption spectra. The DFT optimizations gave rise to non-planar and distorted structures around the hydrazone group with comparable geometrical parameters. The chemical descriptors predict comparable biological activities, while the BDE necessary for the H-abstraction indicated the best antioxidant activity for the Schiff base hydrazone SBH compound.

Graphical abstract

2, 4-Dinitrophenylhydrazone analogs with (E)-chalcone and/or push-pull moieties were synthesized and characterized. The in-vitro and in-silico studies were carried out both to find the structure-activity relationship and to model the pharmacophore.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Scheme 2
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Liu W, Ma L, Zhang L, Chen Y, Zhang Q, Zhang H, et al. 2022 Two New Phenylhydrazone Derivatives from the Pearl River Estuary Sediment-Derived Streptomyces sp. SCSIO 40020 Mar. Drugs 20 449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Belskaya N P, Dehaen W and Bakulev V A 2010 Synthesis and properties of hydrazones bearing amide, thioamide and amidine functions Arkivoc 1 275

    Article  Google Scholar 

  3. Nikolaevskii A, Kniga O, Khizhan E, Tikhonova G, Vinogradov V and Khizhan A 2012 Antioxidant activity of hydrazones with sterically hindered phenol fragments Russ. J. Phys. Chem. 86 1816

    Article  CAS  Google Scholar 

  4. Vicini P, Zani F, Cozzini P and Doytchinova I 2002 Hydrazones of 1, 2-benzisothiazole hydrazides: synthesis, antimicrobial activity and QSAR investigations Eur. J. Med. Chem. 37 553

    Article  CAS  PubMed  Google Scholar 

  5. Zha G-F, Leng J, Darshini N, Shubhavathi T, Vivek H, Asiri A M, et al. 2017 Synthesis, SAR and molecular docking studies of benzo [d] thiazole-hydrazones as potential antibacterial and antifungal agents Bioorg. Med. Chem. Lett. 27 3148

    Article  CAS  PubMed  Google Scholar 

  6. Yildir I, Perçiner H, Sahin M F and Abbasoglu U 1995 Hydrazones of [(2-Benzothiazolylthio) acetyl] hydrazine: Synthesis and Antimicrobial Activity Arch. Pharm. 328 547

    Article  CAS  Google Scholar 

  7. Hameed A, Al-Rashida M, Uroos M, Abid Ali S and Khan K M 2017 Schiff bases in medicinal chemistry: a patent review (2010–2015) Expert Opin. Ther. Pat. 27 63

    Article  CAS  PubMed  Google Scholar 

  8. Maheswari R and Manjula J 2016 Vibrational spectroscopic analysis and molecular docking studies of (E)-4-methoxy-N′-(4-methylbenzylidene) benzohydrazide by DFT J. Mol. Struct. 1115 144

    Article  CAS  Google Scholar 

  9. Khamaysa O M A, Selatnia I, Zeghache H, Lgaz H, Sid A, Chung I-M, et al. 2020 Enhanced corrosion inhibition of carbon steel in HCl solution by a newly synthesized hydrazone derivative: Mechanism exploration from electrochemical, XPS, and computational studies J. Mol. Liq. 315 113805

    Article  CAS  Google Scholar 

  10. Khamaysa O M A, Selatnia I, Lgaz H, Sid A, Lee H-S, Zeghache H, et al. 2021 Hydrazone-based green corrosion inhibitors for API grade carbon steel in HCl: Insights from electrochemical, XPS, and computational studies Colloids Surf. A 626 127047

    Article  CAS  Google Scholar 

  11. Al Zoubi W 2013 Biological activities of Schiff bases and their complexes: a review of recent works Int. J. Org. Chem. 3 73

    Article  Google Scholar 

  12. Aggarwal S, Paliwal D, Kaushik D, Gupta G K and Kumar A 2018 Pyrazole Schiff base hybrids as anti-malarial agents: synthesis, in vitro screening and computational study Comb. Chem. High Throughput Screen. 21 194

    Article  CAS  PubMed  Google Scholar 

  13. Sridhar S K, Pandeya S N, Stables J P and Ramesh A 2002 Anticonvulsant activity of hydrazones, Schiff and Mannich bases of isatin derivatives Eur. J. Pharm. Sci. 16 129

    Article  CAS  PubMed  Google Scholar 

  14. Xu J, Zhou T, Xu Z-Q, Gu X-N, Wu W-N, Chen H, et al. 2017 Synthesis, crystal structures and antitumor activities of copper (II) complexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand J. Mol. Struct. 1128 448

    Article  CAS  Google Scholar 

  15. Ali S M M, Azad M A K, Jesmin M, Ahsan S, Rahman M M, Khanam J A, et al. 2012 In vivo anticancer activity of vanillin semicarbazone Asian Pac. J. Trop. Biomed. 2 438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shockravi A, Sadeghpour M and Olyaei A 2010 Simple and Efficient Procedure for the Synthesis of Symmetrical Bis-Schiff Bases of 5, 5′-Methylenebis (2-aminothiazole) Under Solvent-Free Conditions Synth. Commun. 40 2531

    Article  CAS  Google Scholar 

  17. Saouli S, Selatnia I, Zouchoune B, Sid A, Zendaoui S M, Bensouici C and Bendeif E-E 2020 Synthesis, spectroscopic characterization, crystal structure, DFT studies and biological activities of new hydrazone derivative: 1-(2,5-bis((E)-4-isopropylbenzylidene) cyclopentylidene)-2-(2,4-dinitrophenyl) hydrazine J. Mol. Struct. 1213 128203

    Article  CAS  Google Scholar 

  18. Zouchoune B 2020 How the ascorbic acid and hesperidin do improve the biological activities of the cinnamon: Theoretical investigation Struct. Chem. 31 2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zouchoune B 2021 Theoretical investigation on the biological activities of ginger and some of its combinations: an overview of the antioxidant activity Struct. Chem. 32 1659

    Article  CAS  Google Scholar 

  20. Dammene Debbih O, Sid A, Bouchene R, Bouacida S, Mazouz W and Gherraf N 2018 Two hydrazones derived from 1-aryl-3-(p-substituted phenyl) prop-2-en-1-one: synthesis, crystal structure, Hirshfeld surface analysis and in vitro biological properties Acta Crystallogr. C Struct. Chem. 74 703

    Article  CAS  PubMed  Google Scholar 

  21. Rosca I, Petrovici A R, Brebu M, Stoica I, Minea B and Marangoci N 2016 An original method for producing acetaldehyde and diacetyl by yeast fermentation Braz. J. Microbiol. 47 949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Humphries R M, Hindler J A, Shaffer K and Campeau S A 2019 Evaluation of ciprofloxacin and levofloxacin disk diffusion and Etest using the 2019 Enterobacteriaceae CLSI breakpoints J. Clin. Microbiol. 57 e01797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Constantin S, Lupascu F G, Apotrosoaei M, Vasincu I M, Lupascu D, Buron F, et al. 2017 Synthesis and biological evaluation of the new 1, 3-dimethylxanthine derivatives with thiazolidine-4-one scaffold Chem. Cent. J. 11 12

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sánchez-Moreno C, Larrauri J A and Saura-Calixto F 1998 A procedure to measure the antiradical efficiency of polyphenols J. Sci. Food Agric. 76 270

    Article  Google Scholar 

  25. Bentabet N, Boucherit-Otmani Z and Boucherit K 2014 Composition chimique et activité antioxydante d’extraits organiques des racines de Fredolia aretioides de la région de Béchar en Algérie Phytothérapie 12 364

    Article  CAS  Google Scholar 

  26. ADF2016.01 Version, Theoretical Chemistry, Vrije Universiteit: Amsterdam. The Netherlands, SCM

  27. Baerends E, Ellis D and Ros P 1973 Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure Chem. Phys. 2 41

    Article  CAS  Google Scholar 

  28. Te Velde G and Baerends E 1992 Numerical integration for polyatomic systems J. Comput. Phys. 99 84

    Article  Google Scholar 

  29. Fonseca Guerra C, Snijders J, Te Velde Gt and Baerends E J 1998 Towards an order-N DFT method Theor. Chem. Acc. 99 391

  30. Bickelhaupt F M and Baerends E J 2000 Kohn-Sham density functional theory: predicting and understanding chemistry Rev. Comput. Chem. 15 1

    Article  CAS  Google Scholar 

  31. Te Velde Gt, Bickelhaupt F M, Baerends E J, Fonseca Guerra C, van Gisbergen S J, Snijders J G and Ziegler T 2001 Chemistry with ADF J. Comput. Chem. 22 931

  32. Vosko S H, Wilk L and Nusair M 1980 Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis Can. J. Phys. 58 1200

    Article  CAS  Google Scholar 

  33. Becke A D 1993 Becke’s three parameter hybrid method using the LYP correlation functional J. Chem. Phys. 98 5648

    Article  CAS  Google Scholar 

  34. Lee C, Yang W and Parr R G 1988 Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys. Rev. B 37 785

    Article  CAS  Google Scholar 

  35. Versluis L and Ziegler T 1988 The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration J. Chem. Phys. 88 322

    Article  CAS  Google Scholar 

  36. Fan L and Ziegler T 1992 Application of density functional theory to infrared absorption intensity calculations on main group molecules J. Chem. Phys. 96 9005

    Article  CAS  Google Scholar 

  37. Fan L and Ziegler T 1992 Application of density functional theory to infrared absorption intensity calculations on transition-metal carbonyls J. Phys. Chem. 96 6937

    Article  CAS  Google Scholar 

  38. DiLabio G, Pratt D, LoFaro A and Wright J S 1999 Theoretical study of X− H bond energetics (X = C, N, O, S): Application to substituent effects, gas phase acidities, and redox potentials J. Phys. Chem. A 103 1653

    Article  CAS  Google Scholar 

  39. Feng Y, Liu L, Wang J-T, Huang H and Guo Q-X 2003 Assessment of experimental bond dissociation energies using composite ab initio methods and evaluation of the performances of density functional methods in the calculation of bond dissociation energies J. Chem. Inf. Comput. Sci. 43 2005

    Article  CAS  PubMed  Google Scholar 

  40. Klamt A and Schüürmann G 1993 COSMO: A new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient J. Chem. Soc. Perkin Trans. 2 799

    Article  Google Scholar 

  41. Trott O and Olson A J 2010 AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading J. Comput. Chem. 31 455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tai W, Lu T, Yuan H, Wang F, Liu H, Lu S, et al. 2012 Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors J. Mol. Model. 18 3087

    Article  CAS  PubMed  Google Scholar 

  43. OriginPro 9.0 SR2 software 2013 OriginLab Corporation, Northampton, MA, USA, April 2013

  44. Enrique S 2018 MestReNova [software]. Version 12.0.2-20910, Mestrelab Research, Santiago de Compostela, Spain

  45. Sundaraganesan N, Kalaichelvan S, Meganathan C, Joshua B D and Cornard J 2008 FT-IR, FT-Raman spectra and ab initio HF and DFT calculations of 4-N, N′-dimethylamino pyridine Spectrochim. Acta - Part A 71 898

    Article  CAS  Google Scholar 

  46. Hamidian K, Irandoust M, Rafiee E and Joshaghani M 2012 Synthesis, characterization, and tautomeric properties of some azo-azomethine compounds Zeitschrift für Naturforschung B 67 159

    Article  CAS  Google Scholar 

  47. Yang P, Zhao J, Zhang L, Li L and Zhu Z 2015 Intramolecular hydrogen bonds quench photoluminescence and enhance photocatalytic activity of carbon nanodots Chem. Eur. J. 21 8561

    Article  CAS  PubMed  Google Scholar 

  48. Olszowy M 2019 What is responsible for antioxidant properties of polyphenolic compounds from plants? Plant Physiol. Biochem. 144 135

    Article  CAS  PubMed  Google Scholar 

  49. Wang L, Yang Q, Li Y, Wang S, Yang F and Zhao X 2021 How the functional group substitution and solvent effects affect the antioxidant activity of (+)-catechin? J. Mol. Liq. 327 114818

    Article  CAS  Google Scholar 

  50. Masoud M S, Ali A E, Shaker M A and Ghani M A 2005 Solvent and substituent effects on spectroscopical changes of some diazoaminobenzene derivatives Spectrochim. Acta 61 3102

    Article  Google Scholar 

  51. Thavasi V, Bettens R P A and Leong L P 2009 Temperature and solvent effects on radical scavenging ability of phenols J. Phys. Chem. A 113 3068

    Article  CAS  PubMed  Google Scholar 

  52. Cuvelier M-E, Richard H and Berset C 1992 Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship Biosci. Biotechnol. Biochem. 56 324

    Article  CAS  Google Scholar 

  53. Subramanian M, Vanangamudi G and Thirunarayanan G 2013 Hydroxyapatite catalyzed aldol condensation: Synthesis, spectral linearity, antimicrobial and insect antifeedant activities of some 2, 5-dimethyl-3-furyl chalcones Spectrochim. Acta – Part A 110 116

    Article  CAS  Google Scholar 

  54. Dusso D, Ramirez C, Parise A, Lanza P, Vera D M, Chesta C, et al. 2019 Synthesis of new cyano-substituted analogues of Tröger’s bases from bromo-derivatives. A stereochemical dependence of long-range (nJHH, n = 4, 5, and 6) proton–proton and proton–carbon (nJCH, n = 1, 2, 3, 4, and 5) coupling constants of these compounds Magn. Reson. Chem. 57 423

    Article  CAS  PubMed  Google Scholar 

  55. Souza M A D, Rodrigues L G, Rocha J E, de Freitas T S, Bandeira P N, Marinho M M, Nunes da Rocha M, Marinho E S, Honorato Barreto A C and Coutinho H D M 2023 Synthesis, structural, characterization, antibacterial and antibiotic modifying activity, ADMET study, molecular docking and dynamics of chalcone (E)-1-(4-aminophenyl)-3-(4-nitrophenyl) prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps J. Biomol. Struct. Dyn. 1

  56. Naili N and Zouchoune B 2018 Structural diversity of homobinuclear transition metal complexes of the phenazine ligand: theoretical investigation Struct. Chem. 29 725

    Article  CAS  Google Scholar 

  57. Nemdili H, Zouchoune B, Zendaoui M S and Ferhati A 2019 Structural, bonding and redox properties of 34-electron bimetallic complexes and their oxidized 32-and 33-electron and reduced 35-and 36-electron derivatives containing the indenyl fused π-system: A DFT overview Polyhedron 160 219

    Article  CAS  Google Scholar 

  58. Farah S, Bouchakri N, Zendaoui S-M, Saillard J-Y and Zouchoune B 2010 Electronic structure of bis-azepine transition-metal complexes: a DFT investigation J. Mol. Struct. THEOCHEM 953 143

    Article  CAS  Google Scholar 

  59. Farah S, Ababsa S, Benhamada N and Zouchoune B 2010 Theoretical investigation of the coordination of dibenzazepine to transition-metal complexes: a DFT study Polyhedron 29 2722

    Article  CAS  Google Scholar 

  60. Bouchakri N, Benmachiche A and Zouchoune B 2011 Bonding analysis and electronic structure of transition metal–benzoquinoline complexes: A theoretical study Polyhedron 30 2644

    Article  CAS  Google Scholar 

  61. Mansouri L and Zouchoune B 2015 Substitution effects and electronic properties of the azo dye (1-phenylazo-2-naphthol) species: a TD-DFT electronic spectra investigation Can. J. Chem. 93 509

    Article  CAS  Google Scholar 

  62. Zouchoune B and Mansouri L 2019 Electronic structure and UV–Vis spectra simulation of square planar Bis (1-(4-methylphenylazo)-2-naphtol)-Transition metal complexes [M (L) 2] x (M = Ni, Pd, Pt, Cu, Ag, and x\(=\)− 1, 0,+ 1): DFT and TD-DFT study Struct. Chem. 30 691

    Article  CAS  Google Scholar 

  63. Zendaoui S-M and Zouchoune B 2016 Coordination chemistry of mixed M (benzene)(cyclopendadienyl) sandwich complexes: electronic properties and bonding analysis New J. Chem. 40 2554

    Article  CAS  Google Scholar 

  64. Bensalem N and Zouchoune B 2016 Coordination capabilities of anthracene ligand in binuclear sandwich complexes: DFT investigation Struct. Chem. 27 1781

    Article  CAS  Google Scholar 

  65. Wiberg K B 1968 Application of the pople-santry-segal CNDO method to the cyclopropylcarbinyl and cyclobutyl cation and to bicyclobutane Tetrahedron 24 1083

    Article  CAS  Google Scholar 

  66. Weinhold F and Landis C R 2005 Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective (Cambridge University Press: Cambridge)

    Google Scholar 

  67. Weinhold F and Glendening E D 2001 NBO 5.0 program manual: natural bond orbital analysis programs. Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin, Madison, WI 53706

  68. Li X-H, Liu X-R and Zhang X-Z 2011 Molecular structure and vibrational spectra of three substituted 4-thioflavones by density functional theory and ab initio Hartree-Fock calculations Spectrochim. Acta 78 528

    Article  Google Scholar 

  69. Padmaja L, Ravikumar C, Sajan D, Hubert Joe I, Jayakumar V, Pettit G and Faurskov Nielsen O 2009 Density functional study on the structural conformations and intramolecular charge transfer from the vibrational spectra of the anticancer drug combretastatin-A2 J. Raman Spectrosc. 40 419

    Article  CAS  Google Scholar 

  70. Roy D, Sarkar U, Chattaraj P, Mitra A, Padmanabhan J, Parthasarathi R, et al. 2006 Analyzing toxicity through electrophilicity Mol. Diver. 10 119

    Article  CAS  Google Scholar 

  71. Roy D, Pal N, Mitra A, Bultinck P, Parthasarathi R, Subramanian V and Chattaraj P 2007 An atom counting strategy towards analyzing the biological activity of sex hormones Eur. J. Med. Chem. 42 1365

    Article  CAS  PubMed  Google Scholar 

  72. Pearson R G 1987 Recent advances in the concept of hard and soft acids and bases J. Chem. Educ. 64 561

    Article  CAS  Google Scholar 

  73. Parr R G and Yang W 1989 Density-functional theory of atoms and molecules Oxford (Oxford University Press: Oxford)

    Google Scholar 

  74. Parr R G, Szentpaly L V and Liu S 1999 Electrophilicity Index J. Am. Chem. Soc. 121 1922

    Article  CAS  Google Scholar 

  75. Chattaraj P K, Maiti B and Sarkar U 2003 Philicity: A unified treatment of chemical reactivity and selectivity J. Phys. Chem. A 107 4973

    Article  CAS  Google Scholar 

  76. Chattaraj P K, Sarkar U and Roy D R 2006 Electrophilicity index Chem. Rev. 106 2065

    Article  CAS  PubMed  Google Scholar 

  77. Dan W and Dai J 2020 Recent developments of chalcones as potential antibacterial agents in medicinal chemistry Eur. J. Med. Chem. 187 111980

    Article  CAS  PubMed  Google Scholar 

  78. Farhadi F, Khameneh B, Iranshahi M and Iranshahy M 2019 Antibacterial activity of flavonoids and their structure–activity relationship: An update review Phytotherapy Res. 33 13

    Article  CAS  Google Scholar 

  79. Nowakowska Z, Kędzia B and Schroeder G 2008 Synthesis, physicochemical properties and antimicrobial evaluation of new (E)-chalcones Eur. J. Med. Chem. 43 707

    Article  CAS  PubMed  Google Scholar 

  80. Nowakowska Z 2007 A review of anti-infective and anti-inflammatory chalcones Eur. J. Med. Chem. 42 125

    Article  CAS  PubMed  Google Scholar 

  81. Chen J, Yang J, Ma L, Li J, Shahzad N and Kim C K 2020 Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids Sci. Rep. 10 1

    Google Scholar 

  82. Ouyang X, Li X, Liu J, Liu Y, Xie Y, Du Z, et al. 2020 Structure–activity relationship and mechanism of four monostilbenes with respect to ferroptosis inhibition RSC Adv. 10 31171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Wright J S, Johnson E R and DiLabio G A 2001 Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants J. Am. Chem. Soc. 123 1173

    Article  CAS  PubMed  Google Scholar 

  84. Litwinienko G and Ingold K 2003 Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2, 2-diphenyl-1-picrylhydrazyl (dpph•) in alcohols J. Org. Chem. 68 3433

    Article  CAS  PubMed  Google Scholar 

  85. Leopoldini M, Marino T, Russo N and Toscano M 2004 Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism J. Phys. Chem. A 108 4916

    Article  CAS  Google Scholar 

  86. Leopoldini M, Marino T, Russo N and Toscano M 2004 Density functional computations of the energetic and spectroscopic parameters of quercetin and its radicals in the gas phase and in solvent Theor. Chem. Acc. 111 210

    Article  CAS  Google Scholar 

  87. Leopoldini M, Russo N, Chiodo S and Toscano M 2006 Iron chelation by the powerful antioxidant flavonoid quercetin J. Agric. Food Chem. 54 6343

    Article  CAS  PubMed  Google Scholar 

  88. Charlton N C, Mastyugin M, Török B and Török M J M 2023 Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity Molecules 28 1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Peerannawar S, Horton W, Kokel A, Török F, Török M and Török B 2017 Theoretical and experimental analysis of the antioxidant features of diarylhydrazones Struct. Chem. 28 391

    Article  CAS  Google Scholar 

  90. Ayoup M S, Rabee A R, Abdel-Hamid H, Harras M F, El Menofy N G and Ismail M M 2022 Exploration of nitroaromatic antibiotics via Sanger’s reagent: Synthesis, in silico, and antimicrobial evaluation ACS Omega 7 5254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Coleman J P and Smith C J 2007 Microbial Nucleic Acid and Protein Synthesis S J Enna and David B Bylund (Eds) xPharm: The Comprehensive Pharmacology Reference (Elsevier) p. 1

  92. Spížek J, Novotná J, Řezanka T and Demain A L 2010 Do we need new antibiotics? The search for new targets and new compounds J. Ind. Microbiol. Biotechnol. 37 1241

    Article  PubMed  Google Scholar 

  93. Clark D E 2008 What has virtual screening ever done for drug discovery? Expert Opin. Drug Discov. 3 841

    Article  CAS  PubMed  Google Scholar 

  94. Qureshi M A, Akbar M, Amir M and Javed S 2023 Molecular interactions of esculin with bovine serum albumin and recognition of binding sites with spectroscopy and molecular docking J. Biomol. Struct. Dyn. 41 2630

    Article  CAS  PubMed  Google Scholar 

  95. Lipinski C A, Lombardo F, Dominy B W and Feeney P J 1997 Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings Adv. Drug Deliv. Rev. 23 3

    Article  CAS  Google Scholar 

  96. Borkar M, Prabhu A, Kanugo A and Gautam R K 2023 Pharmacophore modeling, in Computational Approaches in Drug Discovery, Development and Systems Pharmacology Elsevier 159

  97. Khedkar S A, Malde A K, Coutinho E C and Srivastava S 2007 Pharmacophore modeling in drug discovery and development: an overview Med. Chem. 3 187

    Article  CAS  PubMed  Google Scholar 

  98. Lengerli D, Ibis K, Nural Y and Banoglu E 2022 The 1, 2, 3-triazole ‘all-in-one’ring system in drug discovery: A good bioisostere, a good pharmacophore, a good linker, and a versatile synthetic tool Expert Opin. Drug Discov. 17 1209

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to DGRSDT (Direction Générale de la Recherche Scientifique et du Développement Technologique) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouafa Dammene Debbih.

Additional information

Special Issue on Interplay of Structure and Dynamics in Reaction Pathways, Chemical Reactivity and Biological Systems

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1829 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dammene Debbih, O., Mazouz, W., Benslama, O. et al. Hydrazone analogs as DNA gyrase inhibitors and antioxidant agents: Structure-activity relationship and pharmacophore modeling. J Chem Sci 136, 32 (2024). https://doi.org/10.1007/s12039-024-02264-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-024-02264-8

Keywords

Navigation