Skip to main content
Log in

Anchor Effect on Pedal Motion Observed in Crystal Phase of an Azobenzene Derivative

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

Some molecules having a molecular skeleton similar to that of stilbenes and azobenzenes show orientational disorder in the crystals due to pedal motion. Heretofore, the orientational disorder through pedal motion has been observed for the compounds containing only two aromatic rings in the absence of bulky substituent groups. Here we report that the pedal motion can be detected even in the presence of a bulky substituent group to which orientational disorder becomes invisible as a result of anchor effect arising from phenoxyphtalonitrile group. X-ray crystallographic analysis of the compound, C23H18N4O, reveals the existence of partially overlapped two pedal conformers. The compound crystallizes in the monoclinic space group P21/c with a = 12.9429(11) Å, b = 8.5075(5) Å, c = 21.063(2) Å and β = 123.155(6)°. Major pedal conformer is stabilized by weak C–H···O type hydrogen bond and C–H···π type edge-to-face interactions in solid state. Quantum chemical calculations at B3LYP/6-311G+(d,p) level suggest that the stabilization of the compound decreases with increasing deviation from the planar geometry of trans-azobenzene fragment.

Index Abstract

Molecular and crystal structure of 4-[2-Methyl-4-(4-ethylphenyldiazenyl)]phenoxyphtalonitrile, C23H18N4O, indicate the existence of partially overlapped two pedal conformers in which orientational disorder becomes invisible as a result of anchor effect arising from phenoxyphtalonitrile group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Paul IC, Curtin DY (1973) Acc Chem Res 6:217–225

    Article  CAS  Google Scholar 

  2. Gavezzotti A, Simonetta M (1982) Chem Rev 82:1–13

    Article  CAS  Google Scholar 

  3. Bürgi HB (2000) Annu Rev Phys Chem 51:275–296

    Article  Google Scholar 

  4. Bürgi HB (2002) Faraday Discuss 122:41–63

    Article  Google Scholar 

  5. Finder CJ, Newton MG, Allinger NL (1974) Acta Cryst B 30:411–415

    Article  CAS  Google Scholar 

  6. Bernstein J (1975) Acta Cryst B 31:1268–1271

    Article  Google Scholar 

  7. Hoekstra A, Meertens P, Vos A (1975) Acta Cryst B 31:2813–2817

    Article  Google Scholar 

  8. Bouwstra JA, Schouten A, Kroon J (1983) Acta Cryst C 39:1121–1123

    Article  Google Scholar 

  9. Bouwstra JA, Schouten A, Kroon J (1984) Acta Cryst C 40:428–431

    Article  Google Scholar 

  10. Brown CJ (1966) Acta Cryst 21:146–152

    Article  CAS  Google Scholar 

  11. Harada J, Ogawa K, Tomoda S (1997) Acta Cryst B 53:662–672

    Article  Google Scholar 

  12. Harada J, Ogawa K (2009) Chem Soc Rev 38:2244–2252

    Article  CAS  Google Scholar 

  13. Harada J, Uekusa H, Ohashi Y (1999) J Am Chem Soc 121:5809–5810

    Article  CAS  Google Scholar 

  14. Ito Y, Hosomi H, Ohba S (2000) Tetrahedron 56:6833–6844

    Article  CAS  Google Scholar 

  15. Ohba S, Hosomi H, Ito Y (2001) J Am Chem Soc 123:6349–6352

    Article  CAS  Google Scholar 

  16. Saltiel J, Krishna TSR, Laohhasurayotin S, Fort K, Clark RJ (2008) J Phys Chem A 112:199–209

    Article  CAS  Google Scholar 

  17. McCullagh M, Franco I, Ratner MA, Schatz GC (2011) J Am Chem Soc 133:3452–3459

    Article  CAS  Google Scholar 

  18. Choi B-Y, Kahng S-J, Kim S, Kim H, Kim HW, Song YJ, Ihm J, Kuk Y (2006) Phys Rev Lett 96:156106

    Article  Google Scholar 

  19. Harada J, Ogawa K (2001) J Am Chem Soc 123:10884–10888 and references therein

    Article  CAS  Google Scholar 

  20. Harada J, Ogawa K (2009) Chem Soc Rev 38:2244–2252

    Article  CAS  Google Scholar 

  21. Harada J, Ogawa K (2004) J Am Chem Soc 126:3539–3544

    Article  CAS  Google Scholar 

  22. Adams H, Allen RWK, Chin J, O’Sullivan B, Styring P, Sutton LR (2004) Acta Cryst E 60:o289–o290

    Article  Google Scholar 

  23. Ocak-Iskeleli N, Karabiyik H, Albayrak C, Agar E (2008) J Chem Cryst 38:671–677

    Article  CAS  Google Scholar 

  24. Stoe & Cie (2002) X-ARAEA (Version 1.18) and X-RED32 (Version 1.04), Darmstadt, Germany

  25. Sheldrick GM (2008) Acta Cryst A 64:112–122

    Article  Google Scholar 

  26. Hertwig RH, Koch W (1997) Chem Phys Lett 268:345–351

    Article  CAS  Google Scholar 

  27. Becke AD (1988) Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  28. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  29. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T Jr, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 W Revision E.01. Gaussian Inc, Pittsburgh

    Google Scholar 

  30. Schlegel HB (1982) J Comput Chem 3:214–218

    Article  CAS  Google Scholar 

  31. Bacskay GB (1981) Chem Phys 61:385–404

    Article  CAS  Google Scholar 

  32. Spek AL (2009) Acta Cryst D65:148–155

    CAS  Google Scholar 

  33. Iskeleli NO, Karabiyik H, Albayrak C, Petek H, Agar E (2006) J Chem Cryst 36:709–714

    Article  CAS  Google Scholar 

  34. Atalay S, Petek H, Iskeleli NO, Albayrak C, Agar E (2006) Acta Cryst E 62:o3092–o3093

    Article  Google Scholar 

  35. Iskeleli NO, Karabiyik H, Albayrak C, Petek H, Ağar E (2006) Struct Chem 17:393–399

    Article  CAS  Google Scholar 

  36. Karabiyik H, Iskeleli NO, Albayrak C, Agar E (2007) Struct Chem 18:87–93

    Article  CAS  Google Scholar 

  37. Iskeleli NO, Karabiyik H, Albayrak C, Agar E, Gumrukcuoglu IE (2008) Struct Chem 19:565–570

    Article  CAS  Google Scholar 

  38. Karabiyik H, Petek H, Iskeleli NO, Albayrak C (2009) Struct Chem 20:903–910

    Article  CAS  Google Scholar 

  39. Bernstein J, Davis RE, Shimoni L, Chang N-L (1995) Angew Chem Int Ed Engl 34:1555–1573

    Article  CAS  Google Scholar 

  40. Biswas N, Umapathy S (1997) J Phys Chem A 101:5555–5566

    Article  CAS  Google Scholar 

  41. Tsuji T, Takashima H, Takeuchi H, Egawa T, Konaka S (2001) J Phys Chem A 105:9347–9353

    Article  CAS  Google Scholar 

  42. Kim HW, Han M, Shin H-J, Lim S, Oh Y, Tamada K, Hara M, Kim Y, Kawai M, Kuk Y (2011) Phys Rev Lett 106:146101

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Ondokuz Mayıs University for the use of the STOE IPDS II diffractometer purchased under Grants F.279 and F.377.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Karabıyık.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabıyık, H., Petek, H., İskeleli, N.O. et al. Anchor Effect on Pedal Motion Observed in Crystal Phase of an Azobenzene Derivative. J Chem Crystallogr 41, 1642–1648 (2011). https://doi.org/10.1007/s10870-011-0152-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-011-0152-1

Keywords

Navigation