Skip to main content
Log in

Ligand Substitution Chemistry of the Diphosphine Ligand endo,endo-2,3-Bis(diphenylphosphinomethyl)-5-norbornene (dpmn): Syntheses and X-ray Diffraction Structures of PtCl2(dmn) and PtMe2(dpmn)

  • Original Paper
  • Published:
Journal of Chemical Crystallography Aims and scope Submit manuscript

Abstract

The reaction of phosphine ligand endo,endo-2,3-bis(diphenylphosphinomethyl)-5-norbornene (dpmn) with PtCl2(cod) and PtMe2(cod) yields PtCl2(dpmn) (2) and PtMe2(dpmn) (4), respectively. Treatment of 2 with excess MeLi or MeMgCl also furnishes 4 in good yield. Both new platinum compounds have been isolated and characterized by NMR spectroscopy (1H and 31P), elemental analyses, and X-ray crystallography. 2 Crystallizes, as the CH2Cl2 solvate, in the orthorhombic space group Pnma, a = 18.062(3) Å, b = 16.602(3) Å, c = 11.088(2) Å, V = 3,324.7(9) Å3, Z = 4, D cacl = 1.681 mg/m3; R = 0.0432, R w = 0.0759 for 3,755 observed reflections with I > 2σ(I). 4 Crystallizes, as the CH2Cl2 solvate, in the orthorhombic space group Pnma, a = 17.969(3) Å, b = 16.689(3) Å, c = 11.237(2) Å, V = 3,370(1) Å3, Z = 4, D cacl = 1.610 mg/m3; R = 0.0268, R w = 0.0665 for 4,098 observed reflections with I > 2σ(I). The solid-state structures of 2 and 4 confirm the coordination of the platinum(II) center by the seven-membered chelating dpmn ligand; 2 and 4 represent the first structurally characterized examples of organometallic compounds based on the endo,endo-2,3-bis(diphenylphosphinomethyl)-5-norbornene ligand.

Graphical Abstract

The new platinum(II) compounds PtCl2(dpmn) (2) and PtMe2(dpmn) (4) have been synthesized, and their structures established by NMR spectroscopy (1H and 31P) and X-ray crystallography. Compounds 2 and 4 are the first structurally characterized examples of organometallic compounds containing the endo,endo-2,3-bis(diphenylphosphinomethyl)-5-norbornene (dpmn) ligand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1

Similar content being viewed by others

Notes

  1. The 3JP–H coupling constant reported in references [34, 42] was extracted by treating the methyl resonance as though it behaved as a conventional triplet. We would point out that the introduction of line broadening in excess of 2 Hz in the spectral simulations also promotes the collapse of the intense inner lines of the multiplet, as would the presence of any paramagnetic impurity, leading to the production of a simple triplet resonance for the methyl groups.

References

  1. Rothenberg G (2008) Catalysis: concepts and green applications. Wiley-VCH, New York

    Google Scholar 

  2. Casey CP, Petrovich LM (1995) J Am Chem Soc 117:6007

    Article  CAS  Google Scholar 

  3. Dierkes P, van Leeuwen PWNM (1999) J Chem Soc, Dalton Trans 1519

  4. Freixa Z, Leeuwen PWNM (2003) J Chem Soc, Dalton Trans 1890

  5. Yang K, Smith JM, Bott SG, Richmond MG (1993) Organometallics 12:4779

    Article  CAS  Google Scholar 

  6. Shen H, Bott SG, Richmond MG (1995) Organometallics 14:4625

    Article  CAS  Google Scholar 

  7. Bott SG, Yang K, Wang JC, Richmond MG (2000) Inorg Chem 39:6051

    Article  CAS  Google Scholar 

  8. Bott SG, Shen H, Senter RA, Richmond MG (2003) Organometallics 22:1953

    Article  CAS  Google Scholar 

  9. Watson WH, Wu G, Richmond MG (2006) Organometallics 25:930

    Article  CAS  Google Scholar 

  10. Watson WH, Bodige SG, Ejsmont K, Liu J, Richmond MG (2006) J Organomet Chem 691:3609

    Article  CAS  Google Scholar 

  11. Watson WH, Kandala S, Richmond MG (2007) J Organomet Chem 692:968

    Article  CAS  Google Scholar 

  12. Poola B, Wang X, Richmond MG (2007) J Chem Crystallogr 37:641

    Article  CAS  Google Scholar 

  13. Nesterov V, Poola B, Wang X, Richmond MG (2007) J Organomet Chem 692:1806

    Article  CAS  Google Scholar 

  14. Watson WH, Wu G, Richmond MG (2008) J Organomet Chem 693:1439

    Article  CAS  Google Scholar 

  15. Bott SG, Shen H, Huang SH, Richmond MG (2008) J Organomet Chem 693:2327

    Article  CAS  Google Scholar 

  16. Unpublished results: Yang L, Huang SH, Wang X, Richmond MG

  17. Knight JG, Doherty S, Harriman A, Robins EG, Betham M, Eastham GR, Tooze RP, Elsegood MRJ, Champkin P, Clegg W (2000) Organometallic 19:4957

    Article  CAS  Google Scholar 

  18. Brunner H, Kramler K (1991) Synthesis 12:1121

    Article  Google Scholar 

  19. Brunner H, Prester F (1991) J Organomet Chem 414:401

    Article  CAS  Google Scholar 

  20. Kreuzfeld HJ, Doebler C, Abicht HP (1987) J Organomet Chem 336:287

    Article  CAS  Google Scholar 

  21. Doebler C, Kreuzfeld HJ (1981) J Prak Chem 323:667

    Article  CAS  Google Scholar 

  22. Kreuzfeld HJ, Doebler C (1981) React Kinet Catal Lett 16:229

    Article  CAS  Google Scholar 

  23. Drew D, Doyle JR (1990) Inorg Synth 28:346

    Article  CAS  Google Scholar 

  24. Clark HC, Manzer LE (1973) J Organomet Chem 59:411

    Article  CAS  Google Scholar 

  25. Shriver DF (1969) The Manipulation of air-sensitive compounds. McGraw-Hill, New York

    Google Scholar 

  26. Saint Version 6.02, Bruker advanced analytical X-ray systems, Inc. Copyright 1997–1999

  27. SHELXTL Version 5.1, Bruker advanced analytical X-ray systems, Inc. Copyright 1998

  28. PLATON—A multipurpose crystallographic tool (2001) Utrecht University, Utrecht, The Netherlands, Spek, AL

  29. Nagao Y, Inoue T, Fujita E, Terada S, Shiro M (1984) Tetrahedron 40:1215

    Article  CAS  Google Scholar 

  30. Brown DH, Cross RJ, Keat R (1980) J Chem Soc, Dalton Trans 871

  31. Duncan M, Gallagher MJ (1981) Org Mag Reson 15:37

    Article  CAS  Google Scholar 

  32. Quin LD, Williams AJ (2004) Practical interpretation of P-31 NMR spectra and computer assisted structure verification. Advanced Chemistry Development, Toronto

    Google Scholar 

  33. King RB, Kapoor PN (1971) J Am Chem Soc 93:4158

    Article  Google Scholar 

  34. Appleton TG, Bennett MA, Tomkins IB (1976) J Chem Soc Dalton Trans 439

  35. Garrou PE (1981) Chem Rev 81:229

    Article  CAS  Google Scholar 

  36. Oberhauser W, Bachmann C, Brüggeller P (1995) Inorg Chim Acta 238:35

    Article  CAS  Google Scholar 

  37. Oberhauser W, Bachmann C, Stampfl T, Haid R, Langes C, Rieder P, Brüggeller P (1998) Inorg Chim Acta 274:143

    Article  CAS  Google Scholar 

  38. Engelhardt LM, Patrick JM, Raston CL, Twiss P, White AH (1984) Aust J Chem 37:2193

    Article  CAS  Google Scholar 

  39. Johansson MH, Malmstrom T, Wendt OF (2001) Inorg Chim Acta 316:149

    Article  CAS  Google Scholar 

  40. Powell J, Horvath MJ, Lough A (1996) J Chem Soc Dalton Trans 1679

  41. Bovio B, Bonati F, Banditelli G (1985) Gazz Chim Ital 115:613

    CAS  Google Scholar 

  42. Hooton KA (1970) J Chem Soc (A) 1896

  43. Cheney AJ, Mann BE, Shaw BL (1971) Chem Comm 431

  44. Appleton TG, Clark HC, Manzer LE (1973) Coord Chem Rev 10:335

    Article  CAS  Google Scholar 

  45. Mather GG, Pidcock A, Rapsey GJN (1973) J Chem Soc Dalton Trans 2095

  46. Haar CM, Nolan SP, Marshall WJ, Moloy KG, Prock A, Giering WP (1999) Organometallics 18:474

    Article  CAS  Google Scholar 

  47. Thomas JC, Peters JC (2003) J Am Chem Soc 125:8870

    Article  CAS  Google Scholar 

  48. Smith DC Jr, Haar CM, Stevens ED, Nolan SP, Marshall WJ, Moloy KG (2000) Organometallics 19:1427

    Article  CAS  Google Scholar 

  49. Arthur KL, Wang QL, Bregel DM, Smythe NA, O’Neill BA, Goldberg KI, Moloy KG (2005) Organometallics 24:4624

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The NOESY NMR experiments were conducted at the UNT NMR facility with the expert help of Dr. Hongjun Pan, and financial support from the Robert A. Welch Foundation (Grants P-0074-WHW and B-1093-MGR) is much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William H. Watson or Michael G. Richmond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watson, W.H., Huang, SH., Yang, L. et al. Ligand Substitution Chemistry of the Diphosphine Ligand endo,endo-2,3-Bis(diphenylphosphinomethyl)-5-norbornene (dpmn): Syntheses and X-ray Diffraction Structures of PtCl2(dmn) and PtMe2(dpmn) . J Chem Crystallogr 39, 740–746 (2009). https://doi.org/10.1007/s10870-009-9553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10870-009-9553-9

Keywords

Navigation