Skip to main content

Advertisement

Log in

Suppression of beta oscillations by delayed feedback in a cortex-basal ganglia-thalamus-pedunculopontine nucleus neural loop model

  • Research
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Excessive neural synchronization of neural populations in the beta (β) frequency range (12–35 Hz) is intimately related to the symptoms of hypokinesia in Parkinson’s disease (PD). Studies have shown that delayed feedback stimulation strategies can interrupt excessive neural synchronization and effectively alleviate symptoms associated with PD dyskinesia. Work on optimizing delayed feedback algorithms continues to progress, yet it remains challenging to further improve the inhibitory effect with reduced energy expenditure. Therefore, we first established a neural mass model of the cortex-basal ganglia-thalamus-pedunculopontine nucleus (CBGTh-PPN) closed-loop system, which can reflect the internal properties of cortical and basal ganglia neurons and their intrinsic connections with thalamic and pedunculopontine nucleus neurons. Second, the inhibitory effects of three delayed feedback schemes based on the external globus pallidum (GPe) on β oscillations were investigated separately and compared with those based on the subthalamic nucleus (STN) only. Our results show that all four delayed feedback schemes achieve effective suppression of pathological β oscillations when using the linear delayed feedback algorithm. The comparison revealed that the three GPe-based delayed feedback stimulation strategies were able to have a greater range of oscillation suppression with reduced energy consumption, thus improving control performance effectively, suggesting that they may be more effective for the relief of Parkinson’s motor symptoms in practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data available on request.

References

  1. Cabezudo, D., Baekelandt, V., Lobbestael, E.: Multiple-hit hypothesis in Parkinson’s disease: LRRK2 and inflammation. Front. Neurosci. 14, 376 (2020). https://doi.org/10.3389/fnins.2020.00376

    Article  Google Scholar 

  2. Stefani, A., Trendafilov, V., Liguori, C., et al.: Subthalamic nucleus deep brain stimulation on motor-symptoms of Parkinson’s disease: focus on neurochemistry. Prog. Neurobiol. 151, 157–174 (2017). https://doi.org/10.1016/j.pneurobio.2017.01.003

    Article  Google Scholar 

  3. Guo, Y., Rubin, J.E.: Multi-site stimulation of subthalamic nucleus diminishes thalamocortical relay errors in a biophysical network model. Neural Netw. 24(6), 602–616 (2011). https://doi.org/10.1016/j.neunet.2011.03.010

    Article  Google Scholar 

  4. Fountas, Z., Shanahan, M.: The role of cortical oscillations in a spiking neural network model of the basal ganglia. PLoS ONE 12(12), e0189109 (2017). https://doi.org/10.1371/journal.pone.0189109

  5. Liu, C., Wang, J., Li, H., et al.: Modeling and analysis of beta oscillations in the basal ganglia. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 1864–1875 (2018). https://doi.org/10.1109/TNNLS.2017.2688426

    Article  MathSciNet  Google Scholar 

  6. Mallet, N., Pogosyan, A., Sharott, A., et al.: Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J. Neurosci. 28(18), 4795–4806 (2008). https://doi.org/10.1523/JNEUROSCI.0123-08.2008

    Article  Google Scholar 

  7. Rodriguez-Oroz, M.C., Obeso, J.A., Lang, A.E., et al.: Bilateral deep brain stimulation in Parkinson’s disease: a multicentre study with 4 years follow-up. Brain 128(10), 2240–2249 (2005). https://doi.org/10.1093/brain/awh571

    Article  Google Scholar 

  8. Deuschl, G., Schade-Brittinger, C., Krack, P., et al.: A randomized trial of deep-brain stimulation for Parkinson’s disease. N. Engl. J. Med. 355(9), 896–908 (2006). https://doi.org/10.1056/NEJMoa060281

    Article  Google Scholar 

  9. deSouza, R.M., Akram, H., Low, H.L., et al.: The timing of deep brain stimulation for Parkinson disease in the UK from 1997 to 2012. Eur. J. Neurol. 22(10), 1415–1417 (2015). https://doi.org/10.1111/ene.12795

    Article  Google Scholar 

  10. Tinkhauser, G., Pogosyan, A., Little, S., et al.: The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease. Brain 140(4), 1053–1067 (2017). https://doi.org/10.1093/brain/awx010

    Article  Google Scholar 

  11. Yu, Y., Hao, Y., Wang, Q.: Model-based optimized phase-deviation deep brain stimulation for Parkinson’s disease. Neural Netw. 122, 308–319 (2020). https://doi.org/10.1016/j.neunet.2019.11.001

    Article  Google Scholar 

  12. Dorval, A.D., Grill, W.M.: Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA rat model of parkinsonism. J. Neurophysiol. 111(10), 1949–1959 (2014). https://doi.org/10.1152/jn.00713.2013

    Article  Google Scholar 

  13. Lu, C., Amundsen Huffmaster, S.L., Louie, K.H., et al.: Pallidal oscillation dynamics following cessation of deep brain stimulation in Parkinson’s disease. Mov. Disord. 35(9), 1697–1698 (2020). https://doi.org/10.1002/mds.28227

    Article  Google Scholar 

  14. Harmsen, I.E., Elias, G.J.B., Beyn, M.E., et al.: Clinical trials for deep brain stimulation: current state of affairs. Brain Stimul. 13(2), 378–385 (2020). https://doi.org/10.1016/j.brs.2019.11.008

    Article  Google Scholar 

  15. Wang, K., Wang, J., Zhu, Y., et al.: Adaptive closed-loop control strategy inhibiting pathological basal ganglia oscillations. Biomed. Signal Process. Control 77, 103776 (2022). https://doi.org/10.1016/j.bspc.2022.103776

  16. Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992). https://doi.org/10.1016/0375-9601(92)90745-8

    Article  ADS  Google Scholar 

  17. Popovych, O.V., Hauptmann, C., Tass, P.A.: Control of neuronal synchrony by nonlinear delayed feedback. Biol. Cybern. 95(1), 69–85 (2006). https://doi.org/10.1007/s00422-006-0066-8

    Article  MathSciNet  MATH  Google Scholar 

  18. Lin, W., Pu, Y., Guo, Y., et al.: Oscillation suppression and synchronization: frequencies determine the role of control with time delays. Europhys. Lett. 102(2), 20003 (2013). https://doi.org/10.1209/0295-5075/102/20003

    Article  ADS  Google Scholar 

  19. Wedgwood, K.C.A., Słowiński, P., Manson, J., et al.: Robust spike timing in an excitable cell with delayed feedback. J. Royal Soc. Interface 18(177), 20210029 (2021). https://doi.org/10.1098/rsif.2021.0029

    Article  Google Scholar 

  20. Rosenblum, M., Pikovsky, A.: Delayed feedback control of collective synchrony: an approach to suppression of pathological brain rhythms. Phys. Rev. E 70(4), 041904 (2004). https://doi.org/10.1103/PhysRevE.70.041904

  21. Hövel, P., Schöll, E.: Control of unstable steady states by time-delayed feedback methods. Phys. Rev. E 72(4), 046203 (2005). https://doi.org/10.1103/PhysRevE.72.046203

  22. Popovych, O., Lysyansky, B., Rosenblum, M., et al.: Pulsatile desynchronizing delayed feedback for closed-loop deep brain stimulation. PLoS ONE 12(3), e0173363 (2017). https://doi.org/10.1371/journal.pone.0173363

  23. Popovych, O.V., Tass, P.A.: Multisite delayed feedback for electrical brain stimulation. Front. Physiol. 9, 46 (2018). https://doi.org/10.3389/fphys.2018.00046

    Article  Google Scholar 

  24. Daneshzand, M., Faezipour, M., Barkana, B.D.: Delayed feedback frequency adjustment for deep brain stimulation of subthalamic nucleus oscillations. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2194–2197 (2018). https://doi.org/10.1109/EMBC.2018.8512652

  25. Popovych, O.V., Tass, P.A.: Adaptive delivery of continuous and delayed feedback deep brain stimulation—a computational study. Sci. Rep. 9(1), 10585 (2019). https://doi.org/10.1038/s41598-019-47036-4

    Article  ADS  Google Scholar 

  26. Liu, C., Zhou, C., Wang, J., et al.: Delayed feedback-based suppression of pathological oscillations in a neural mass model. IEEE Trans. Cybern. 51(10), 5046–5056 (2021). https://doi.org/10.1109/TCYB.2019.2923317

    Article  Google Scholar 

  27. Rowe, D.L., Robinson, P.A., Rennie, C.J.: Estimation of neurophysiological parameters from the waking EEG using a biophysical model of brain dynamics. J. Theor. Biol. 231(3), 413–433 (2004). https://doi.org/10.1016/j.jtbi.2004.07.004

  28. Engblom, S., Wilson, D.B., Baker, R.E.: Scalable population-level modelling of biological cells incorporating mechanics and kinetics in continuous time. Royal Soc. Open Sci. 5(8), 180379 (2018). https://doi.org/10.1098/rsos.180379

  29. Ahmadizadeh, S., Karoly, P.J., Nešić, D., et al.: Bifurcation analysis of two coupled Jansen-Rit neural mass models. PLoS ONE 13(3), e0192842 (2018). https://doi.org/10.1371/journal.pone.0192842

  30. Köksal Ersöz, E., Modolo, J., Bartolomei, F., et al.: Neural mass modeling of slow-fast dynamics of seizure initiation and abortion. PLoS Comput. Biol. 16(11), e1008430 (2020). https://doi.org/10.1371/journal.pcbi.1008430

  31. Luyao Yan, A., Honghui Zhang, B., Zhongkui Sun, C., et al.: Mechanism analysis for excitatory interneurons dominating poly-spike wave and optimization of electrical stimulation. Chaos An. Interdiscip. J. Nonlinear Sci. 32(3), 033110 (2022). https://doi.org/10.1063/5.0076439

  32. Ford, B., Holmes, C.J., Mainville, L., et al.: GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J. Comp. Neurol. 363(2), 177–196 (1995). https://doi.org/10.1002/cne.903630203

    Article  Google Scholar 

  33. Lee, M.S., Rinne, J.O., Marsden, C.D.: The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med. J. 41(2), 167 (2000). https://doi.org/10.3349/ymj.2000.41.2.167

    Article  Google Scholar 

  34. Mena-Segovia, J., Bolam, J.P., Magill, P.J.: Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci. 27(10), 585–588 (2004). https://doi.org/10.1016/j.tins.2004.07.009

    Article  Google Scholar 

  35. Ye, M., Hayar, A., Strotman, B., et al.: Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons. J. Neurophysiol. 103(5), 2417–2432 (2010). https://doi.org/10.1152/jn.01143.2009

    Article  Google Scholar 

  36. Liu, C., Zhou, C., Wang, J., et al.: The role of coupling connections in a model of the cortico-basal ganglia-thalamocortical neural loop for the generation of beta oscillations. Neural Netw. 123, 381–392 (2020). https://doi.org/10.1016/j.neunet.2019.12.021

    Article  Google Scholar 

  37. Moran, R.J., Mallet, N., Litvak, V., et al.: Alterations in brain connectivity underlying beta oscillations in parkinsonism. PLoS Comput. Biol. 7(8), e1002124 (2011). https://doi.org/10.1371/journal.pcbi.1002124

  38. Corbit, V.L., Whalen, T.C., Zitelli, K.T., et al.: Pallidostriatal projections promote oscillations in a dopamine-depleted biophysical network model. J. Neurosci. 36(20), 5556–5571 (2016). https://doi.org/10.1523/JNEUROSCI.0339-16.2016

    Article  Google Scholar 

  39. Madadi Asl, M., Asadi, A., Enayati, J., et al.: Inhibitory spike-timing-dependent plasticity can account for pathological strengthening of pallido-subthalamic synapses in Parkinson’s disease. Front. Physiol. 13, 915626 (2022). https://doi.org/10.3389/fphys.2022.915626

  40. Lee, K., Masmanidis, S. C.: Aberrant features of in vivo striatal dynamics in Parkinson’s disease. J. Neurosci. Res. 97(12), 1678–1688 (2019). https://doi.org/10.1002/jnr.24519

  41. Brown, P., Oliviero, A., Mazzone, P., et al.: Dopamine dependency of oscillations between subthalamic nucleus and pallidum in Parkinson’s disease. J. Neurosci. 21(3), 1033–1038 (2001). https://doi.org/10.1523/JNEUROSCI.21-03-01033.2001

    Article  Google Scholar 

  42. David, O., Friston, K.J.: A neural mass model for MEG/EEG. Neuroimage 20(3), 1743–1755 (2003). https://doi.org/10.1016/j.neuroimage.2003.07.015

    Article  Google Scholar 

  43. Jansen, B.H., Rit, V.G.: Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol. Cybern. 73(4), 357–366 (1995). https://doi.org/10.1007/BF00199471

    Article  MATH  Google Scholar 

  44. Yu, Y., Zhang, H., Zhang, L., et al.: Dynamical role of pedunculopntine nucleus stimulation on controlling Parkinson’s disease. Physica A 525, 834–848 (2019). https://doi.org/10.1016/j.physa.2019.04.016

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Oswal, A., Cao, C., Yeh, C.-H., et al.: Neural signatures of hyperdirect pathway activity in Parkinson’s disease. Nat. Commun. 12(1), 5185 (2021). https://doi.org/10.1038/s41467-021-25366-0

    Article  ADS  Google Scholar 

  46. Wei, W., Zhang, Z., Chen, N., et al.: On disturbance rejection control of the epileptiform spikes. Cogn. Neurodyn. 16(2), 425–441 (2022). https://doi.org/10.1007/s11571-021-09704-y

    Article  Google Scholar 

  47. Liu, C., Zhou, C., Wang, J., et al.: Mathematical modeling for description of oscillation suppression induced by deep brain stimulation. IEEE Trans. Netural Syst. Rehabil. Eng. 26(9), 1649–1658 (2018). https://doi.org/10.1109/TNSRE.2018.2853118

    Article  Google Scholar 

  48. Liu, F., Wang, J., Liu, C., et al.: A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in Parkinson’s disease. Chaos 26(12), 123113 (2016). https://doi.org/10.1063/1.4972200

  49. Holt, A.B., Wilson, D., Shinn, M., et al.: Phasic burst stimulation: a closed-loop approach to tuning deep brain stimulation parameters for Parkinson’s disease. PLoS Comput. Biol. 12(7), e1005011 (2016). https://doi.org/10.1371/journal.pcbi.1005011

  50. Holt, A.B., Netoff, T.I.: Origins and suppression of oscillations in a computational model of Parkinson’s disease. J. Comput. Neurosci. 37(3), 505–521 (2014). https://doi.org/10.1007/s10827-014-0523-7

    Article  MathSciNet  MATH  Google Scholar 

  51. Su, F., Chen, M., Zu, L., et al.: Model-based closed-loop suppression of parkinsonian beta band oscillations through origin analysis. IEEE Trans. Netural Syst. Rehabil. Eng. 29, 450–457 (2021). https://doi.org/10.1109/TNSRE.2021.3056544

    Article  Google Scholar 

  52. Yu, H.-T., Meng, Z.-H., Liu, C., et al.: Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme. Chin. Phys. B 30(3), 038703 (2021). https://doi.org/10.1088/1674-1056/abd395

  53. Asadi, A., Madadi Asl, M., Vahabie, A.-H., et al.: The origin of abnormal beta oscillations in the Parkinsonian corticobasal ganglia circuits. Parkinson’s Dis. 2022, 1–13 (2022). https://doi.org/10.1155/2022/7524066

    Article  Google Scholar 

  54. McCarthy, M.M., Moore-Kochlacs, C., Gu, X., et al.: Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proc. Natl. Acad. Sci. U.S.A. 108(28), 11620–11625 (2011). https://doi.org/10.1073/pnas.1107748108

    Article  ADS  Google Scholar 

  55. McConnell, G.C., So, R.Q., Hilliard, J.D., et al.: Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. J. Neurosci. 32(45), 15657–15668 (2012). https://doi.org/10.1523/JNEUROSCI.2824-12.2012

    Article  Google Scholar 

  56. de la Crompe, B., Aristieta, A., Leblois, A., et al.: The globus pallidus orchestrates abnormal network dynamics in a model of Parkinsonism. Nat. Commun. 11(1), 1570 (2020). https://doi.org/10.1038/s41467-020-15352-3

    Article  ADS  Google Scholar 

  57. Xie, J., Li, T., He, T., et al.: Deep brain stimulation on the external segment of the globus pallidus improves the electrical activity of internal segment of globus pallidus in a rat model of Parkinson’s disease. Brain Res. 1797, 148115 (2022). https://doi.org/10.1016/j.brainres.2022.148115

Download references

Funding

This work was funded by the National Natural Science Foundation of China under the grant nos. 11502139, 11871377, and 12071274.

Author information

Authors and Affiliations

Authors

Contributions

Yuqin Sun finished the definition of dynamical model; Jiali Lü finished the numerical results and figures; Ye Zhou and Yingpeng Liu explained the biophysical mechanism and numerical results; Yuan Chai suggested this study and contributed to the writing of the original draft and editing of the final version. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yuan Chai.

Ethics declarations

Ethical approval

This is a theoretical study. The Shanghai University of Electric Power Research Ethics Committee has confirmed that no ethical approval is required.

Informed consent

All authors (Yuqin Sun, Jiali Lü, Ye Zhou, Yingpeng Liu, and Yuan Chai) agree to submit and publish this work on Journal of Biological Physics.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Lü, J., Zhou, Y. et al. Suppression of beta oscillations by delayed feedback in a cortex-basal ganglia-thalamus-pedunculopontine nucleus neural loop model. J Biol Phys 49, 463–482 (2023). https://doi.org/10.1007/s10867-023-09641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-023-09641-3

Keywords

Navigation