Skip to main content
Log in

Origins and suppression of oscillations in a computational model of Parkinson’s disease

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Efficacy of deep brain stimulation (DBS) for motor signs of Parkinson’s disease (PD) depends in part on post-operative programming of stimulus parameters. There is a need for a systematic approach to tuning parameters based on patient physiology. We used a physiologically realistic computational model of the basal ganglia network to investigate the emergence of a 34 Hz oscillation in the PD state and its optimal suppression with DBS. Discrete time transfer functions were fit to post-stimulus time histograms (PSTHs) collected in open-loop, by simulating the pharmacological block of synaptic connections, to describe the behavior of the basal ganglia nuclei. These functions were then connected to create a mean-field model of the closed-loop system, which was analyzed to determine the origin of the emergent 34 Hz pathological oscillation. This analysis determined that the oscillation could emerge from the coupling between the globus pallidus external (GPe) and subthalamic nucleus (STN). When coupled, the two resonate with each other in the PD state but not in the healthy state. By characterizing how this oscillation is affected by subthreshold DBS pulses, we hypothesize that it is possible to predict stimulus frequencies capable of suppressing this oscillation. To characterize the response to the stimulus, we developed a new method for estimating phase response curves (PRCs) from population data. Using the population PRC we were able to predict frequencies that enhance and suppress the 34 Hz pathological oscillation. This provides a systematic approach to tuning DBS frequencies and could enable closed-loop tuning of stimulation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamchic, I., C. Hauptmann, U. B. Barnikol, N. Pawelczyk, O. Popovych, T. T. Barnikol, A. Silchenko, J. Volkmann, G. Deuschl, W. G. Meissner, M. Maarouf, V. Sturm, H. J. Freund, and P. A. Tass, (2014). Coordinated reset neuromodulation for Parkinson’s disease: Proof-of-concept study: Mov Disord.

  • Alberts, W. W., Wright, E. W., Jr., & Feinstein, B. (1969). Cortical potentials and Parkinsonian tremor. Nature, 221, 670–672.

    Article  CAS  PubMed  Google Scholar 

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–75.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–81.

    Article  CAS  PubMed  Google Scholar 

  • Bernheimer, H., Birkmeyer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Journal of Neurological Sciences, 20, 415–445.

    Article  CAS  Google Scholar 

  • Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19, 7617–7628.

    CAS  Google Scholar 

  • Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in Neurosciences, 25, 525–531.

    Article  CAS  PubMed  Google Scholar 

  • Bhidayasiri, R., & Truong, D. D. (2008). Motor complications in Parkinson disease: clinical manifestations and management. Journal of the Neurological Sciences, 266, 204–215.

    Article  PubMed  Google Scholar 

  • Birdno, M. J., Kuncel, A. M., Dorval, A. D., Turner, D. A., & Grill, W. M. (2008). Tremor varies as a function of the temporal regularity of deep brain stimulation. Neuroreport, 19, 599–602.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bronte-Stewart, H., Barberini, C., Koop, M. M., Hill, B. C., Henderson, J. M., & Wingeier, B. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Experimental Neurology, 215, 20–28.

    Article  CAS  PubMed  Google Scholar 

  • Brown, P., (2006). Bad oscillations in Parkinson’s disease: J Neural Transm Suppl, p. 27-30.

  • Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human: clinical neurophysiology. Official Journal of the International Federation of Clinical Neurophysiology, 116, 2510–2519.

    Article  Google Scholar 

  • Butson, C. R., & McIntyre, C. C. (2006). Role of electrode design on the volume of tissue activated during deep brain stimulation. Journal of Neural Engineering, 3, 1–8.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., Tsai, C. H., Tisch, S., Limousin, P., Hariz, M., & Brown, P. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205, 214–21.

    Article  PubMed  Google Scholar 

  • Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23, 11741–11752.

    CAS  Google Scholar 

  • Cui, J., Canavier, C. C., & Butera, R. J. (2009). Functional phase response curves: a method for understanding synchronization of adapting neurons. Journal of Neurophysiology, 102, 387–98.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dejean, C., Hyland, B., & Arbuthnott, G. (2009). Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia. Cerebral Cortex, 19, 1055–63.

    Article  PubMed  Google Scholar 

  • DeLong, M. R., G. E. Alexander, W. C. Miller, and M. D. Crutcher, (1992). Anatomical and functional aspects of basal ganglia-thalamocortical circuits, in J. W. Ironside, R. H. S. Mindham, R. J. Smith, E. G. S. Spokes, and W. Winlow, eds., Function and dysfunction in the basal ganglia: OxfordNew YorkSeoulTokyo Rergamon Press, p. 3-32.

  • Devergnas, A., Pittard, D., Bliwise, D., & Wichmann, T. (2014). Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys. Neurobiology of Disease, 68C, 156–166.

    Article  Google Scholar 

  • Dorval, A. D., and W. M. Grill, (2014). Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA Rat Model of Parkinsonism: J Neurophysiol.

  • Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100, 2807–2818.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dorval, A. D., Kuncel, A. M., Birdno, M. J., Turner, D. A., & Grill, W. M. (2010). Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. Journal of Neurophysiology, 104, 911–921.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ermentrout, G. B., Beverlin, B., 2nd, Troyer, T., & Netoff, T. I. (2011). The variance of phase-resetting curves. Journal of Computational Neuroscience, 31, 185–197.

    Article  PubMed  Google Scholar 

  • Eusebio, A., & Brown, P. (2007). Oscillatory activity in the basal ganglia. Parkinsonism & Related Disorders, 13(Suppl 3), S434–6.

    Article  Google Scholar 

  • Feng, X. J., Greenwald, B., Rabitz, H., Shea-Brown, E., & Kosut, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4, L14–21.

    Article  PubMed  Google Scholar 

  • Gillies, A., & Willshaw, D. (2007). Neuroinformatics and modeling of the basal ganglia: bridging pharmacology and physiology. Expert Review of Medical Devices, 4, 663–672.

    Article  CAS  PubMed  Google Scholar 

  • Glass, L., & Mackey, M. C. (1988). From clocks to chaos: the rhythms of life (p. 248). Princeton: Princeton University Press.

    Google Scholar 

  • Goldberg, J. A., T. Bourad, and H. Bergman, (2004). Microrecording in the primate MPTP Model, p. 46.

  • Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science (New York, N.Y.), 324, 354–359.

    Article  CAS  Google Scholar 

  • Green, A. L., and T. Z. Aziz, (2014, Steering technology for deep brain stimulation: Brain.

  • Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28, 425–441.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30, 357–364.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23, 1916–1923.

    CAS  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–209.

    Article  CAS  PubMed  Google Scholar 

  • Hines, M. L., & Carnevale, N. T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–35.

    Article  CAS  PubMed  Google Scholar 

  • Holgado, A. J., Terry, J. R., & Bogacz, R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 12340–12352.

    Article  CAS  Google Scholar 

  • Hunka, K., Suchowersky, O., Wood, S., Derwent, L., & Kiss, Z. H. (2005). Nursing time to program and assess deep brain stimulators in movement disorder patients. The Journal of Neuroscience Nursing: Journal of the American Association of Neuroscience Nurses, 37, 204–210.

    Article  Google Scholar 

  • Jenner, P. (2003). The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease. Parkinsonism & Related Disorders, 9, 131–7.

    Article  Google Scholar 

  • Jenner, P. (2008). Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Annals of Neurology, 64(Suppl 2), S16–29.

    CAS  PubMed  Google Scholar 

  • Kuhn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Experimental Neurology, 194, 212–20.

    Article  PubMed  Google Scholar 

  • Kuhn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. European Journal of Neuroscience, 23, 1956–60.

    Article  PubMed  Google Scholar 

  • Kuhn, A. A., Kempf, F., Brucke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., Trottenberg, T., Kupsch, A., Schneider, G. H., Hariz, M. I., Vandenberghe, W., Nuttin, B., & Brown, P. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 6165–6173.

    Article  CAS  Google Scholar 

  • Kühn, A. A., Tsui, A., Aziz, T., Ray, N., Brücke, C., Kupsch, A., Schneider, G. H., & Brown, P. (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Experimental Neurology, 215, 380–7.

    Article  PubMed  Google Scholar 

  • Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–80.

    Article  CAS  PubMed  Google Scholar 

  • Leblois, A., Boraud, T., Meissner, W., Bergman, H., & Hansel, D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 3567–3583.

    Article  CAS  Google Scholar 

  • Lengyel, M., Kwag, J., Paulsen, O., & Dayan, P. (2005). Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves. Nature Neuroscience, 8, 1677–83.

    Article  CAS  PubMed  Google Scholar 

  • Liang, G. S., Chou, K. L., Baltuch, G. H., Jaggi, J. L., Loveland-Jones, C., Leng, L., Maccarone, H., Hurtig, H. I., Colcher, A., Stern, M. B., Kleiner-Fisman, G., Simuni, T., & Siderowf, A. D. (2006). Long-term outcomes of bilateral subthalamic nucleus stimulation in patients with advanced Parkinson’s disease. Stereotactic and Functional Neurosurgery, 84, 221–227.

    Article  PubMed  Google Scholar 

  • Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J. F., Broussolle, E., Perret, J. E., & Benabid, A. L. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91–5.

    Article  CAS  PubMed  Google Scholar 

  • Mallet, N., Pogosyan, A., Marton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. Journal of Neuroscience, 28, 14245–58.

    Article  CAS  PubMed  Google Scholar 

  • Marreiros, A. C., Cagnan, H., Moran, R. J., Friston, K. J., & Brown, P. (2012). Basal ganglia-cortical interactions in Parkinsonian patients. NeuroImage, 66c, 301–310.

    Google Scholar 

  • McCarthy, M. M., Moore-Kochlacs, C., Gu, X., Boyden, E. S., Han, X., & Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 108, 11620–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClelland, S., 3rd, Ford, B., Senatus, P. B., Winfield, L. M., Du, Y. E., Pullman, S. L., Yu, Q., Frucht, S. J., McKhann, G. M., 2nd, & Goodman, R. R. (2005). Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy. Neurosurgical Focus, 19, E12.

    PubMed  Google Scholar 

  • McConnell, G. C., So, R. Q., Hilliard, J. D., Lopomo, P., & Grill, W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 15657–15668.

    Article  CAS  Google Scholar 

  • McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.

    Article  PubMed  Google Scholar 

  • Meissner, W., Leblois, A., Hansel, D., Bioulac, B., Gross, C. E., Benazzouz, A., & Boraud, T. (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain a Journal of Neurology, 128, 2372–2382.

    Article  PubMed  Google Scholar 

  • Mera, T., Vitek, J. L., Alberts, J. L., & Giuffrida, J. P. (2011). Kinematic optimization of deep brain stimulation across multiple motor symptoms in Parkinson’s disease. Journal of Neuroscience Methods, 198, 280–286.

    Article  PubMed Central  PubMed  Google Scholar 

  • Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7, e1002124.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moro, E., Esselink, R. J., Xie, J., Hommel, M., Benabid, A. L., & Pollak, P. (2002). The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology, 59, 706–13.

    Article  CAS  PubMed  Google Scholar 

  • Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., & White, J. A. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.

    Article  PubMed  Google Scholar 

  • Nevado-Holgado, A. J., Mallet, N., Magill, P. J., & Bogacz, R. (2014). Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. Journal of Physiology, 592, 1429–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oppenheim, A. V., A. S. Willsky, and S. H. Nawab, (1996). Signals & systems (2nd ed.), Prentice-Hall, Inc.

  • Ota, K., Omori, T., & Aonishi, T. (2009). MAP estimation algorithm for phase response curves based on analysis of the observation process. Journal of Computational Neuroscience, 26, 185–202.

    Article  PubMed  Google Scholar 

  • Pasillas-Lépine, W. (2013). Delay-induced oscillations in Wilson and Cowan’s model: an analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects. Biological Cybernetics, 107, 289–308.

    Article  PubMed  Google Scholar 

  • Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.

    Article  CAS  PubMed  Google Scholar 

  • Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., Melcarne, A., & Lopiano, L. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery and Psychiatry, 71, 215–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.

    Article  PubMed  Google Scholar 

  • Ryapolova-Webb, E., Afshar, P., Stanslaski, S., Denison, T., de Hemptinne, C., Bankiewicz, K., & Starr, P. A. (2014). Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate. Journal of Neural Engineering, 11, 016009.

    Article  PubMed  Google Scholar 

  • Santaniello, S., Fiengo, G., Glielmo, L., & Grill, W. M. (2011). Closed-loop control of deep brain stimulation: a simulation study: IEEE transactions on neural systems and rehabilitation engineering. A Publication of the IEEE Engineering in Medicine and Biology Society, 19, 15–24.

    Google Scholar 

  • Schultheiss, N. W., Edgerton, J. R., & Jaeger, D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. Journal of Neuroscience, 30, 2767–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. European Journal of Neuroscience, 21, 1413–22.

    Article  PubMed  Google Scholar 

  • Stiefel, K. M., Gutkin, B. S., & Sejnowski, T. J. (2008). Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PLoS One, 3, e3947.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tachibana, Y., Kita, H., Chiken, S., Takada, M., & Nambu, A. (2008). Motor cortical control of internal pallidal activity through glutamatergic and GABAergic inputs in awake monkeys. The European Journal of Neuroscience, 27, 238–253.

    Article  PubMed  Google Scholar 

  • Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–8.

    Article  PubMed  Google Scholar 

  • Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22, 2963–2976.

    CAS  Google Scholar 

  • Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., Treuer, H., Sturm, V., & Schnitzler, A. (2004). Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders, 19, 1328–33.

    Article  PubMed  Google Scholar 

  • Torben-Nielsen, B., Uusisaari, M., & Stiefel, K. M. (2010). A comparison of methods to determine neuronal phase-response curves. Front Neuroinform, 4, 6.

    PubMed Central  PubMed  Google Scholar 

  • Tsang, E. W., Hamani, C., Moro, E., Mazzella, F., Saha, U., Lozano, A. M., Hodaie, M., Chuang, R., Steeves, T., Lim, S. Y., Neagu, B., & Chen, R. (2012). Subthalamic deep brain stimulation at individualized frequencies for Parkinson disease. Neurology, 78, 1930–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Albada, S. J., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. Journal of Theoretical Biology, 257, 642–663.

    Article  PubMed  Google Scholar 

  • van Albada, S. J., Gray, R. T., Drysdale, P. M., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations. Journal of Theoretical Biology, 257, 664–688.

    Article  PubMed  Google Scholar 

  • Volkmann, J., Herzog, J., Kopper, F., & Deuschl, G. (2002). Introduction to the programming of deep brain stimulators: Movement disorders. Official Journal of the Movement Disorder Society, 17(Suppl 3), S181–7.

    Article  Google Scholar 

  • Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson, C. J., Beverlin, B., 2nd, & Netoff, T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in Systems Neuroscience, 5, 50.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by MnDrive Fellowship, National Science Foundation IGERT DGE-1069 104, NSF Collaborative research grant 1264432, Medtronic, Netoff CAREER 0954797, Neuroscience R21 institutional training grant 2T32GM008471.

Conflict of interest

Research was funded in part by Medtronic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theoden I. Netoff.

Additional information

Action Editor: Charles Wilson

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holt, A.B., Netoff, T.I. Origins and suppression of oscillations in a computational model of Parkinson’s disease. J Comput Neurosci 37, 505–521 (2014). https://doi.org/10.1007/s10827-014-0523-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-014-0523-7

Keywords

Navigation