Skip to main content
Log in

In silico validation procedure for cell volume fraction estimation through dielectric spectroscopy

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

Dielectric spectroscopy has proved to be a good tool for analyzing the passive electrical properties of biological tissues as well as those of inhomogeneous materials. This technique promises to be a valid alternative to the classical ones based on metabolites to monitor the growth and cell volume fraction of cell cultures in a simple and minimally invasive way. In order to obtain an accurate estimation of the cell volume fraction as a function of the permittivity of the suspension, a simple in silico procedure is proposed. The procedure is designed to perform homogenization from the micro-scale to the macro-scale using simple analytical models and simulation setups hypothesizing the properties of diluted suspension (cell volume fraction less than 0.2). Results obtained show the possibility to overcome some trouble involving the analytical treatment of the cellular shape by considering a sphere with the same permittivity in the quantitative analysis of the cell volume fraction. The entire study is based on computer simulations performed in order to verify the correctness of the procedure. Obtained data are used in a cell volume fraction estimation scenario to show the effectiveness of the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gabriel, C., Gabriel, S., Corthout, E.: The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 41, 2231–2249 (1996)

    Article  Google Scholar 

  2. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys. Med. Biol. 41, 2251–2269 (1996)

    Article  Google Scholar 

  3. Gabriel, S., Lau, R.W., Gabriel, C.: The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 41, 2271–2293 (1996)

    Article  Google Scholar 

  4. Sihvola, A.: Electromagnetic mixing formulas and applications. The Institute of Electrical Engineers (1996)

  5. Fricke, H.: The electric permittivity of a dilute suspension of membrane-covered ellipsoids. J. App. Phys. 24, 644–645 (1953)

    Article  ADS  Google Scholar 

  6. Fricke, H.: The complex conductivity of a suspension of stratified particles of spherical or cylindrical form. J. Phys. Chem. 59, 168–170 (1955)

    Article  Google Scholar 

  7. Schwan, H.P., Lawrence, S.H., Tobias, C.A.: Electrical properties of tissue and cell suspensions. Adv. Med. Biol. Phys. 5, 147–152 (1957)

    Google Scholar 

  8. Schwan, H.P., Bothwell, T.P.: Electrical properties of the plasma membrane of erythrocytes at low frequencies. Nature 178, 265–266 (1956)

    ADS  Google Scholar 

  9. Di Biasio, A., Cametti, C.: Effect of shape on the dielectric properties of biological cell suspensions. Bioelectrochemistry 71, 149–156 (2007)

    Article  Google Scholar 

  10. Di Biasio, A., Cametti, C.: Dielectric properties of aqueous zwitterionic liposome suspensions. Bioelectrochemistry 70, 328–334 (2007)

    Article  Google Scholar 

  11. Asami, K.: Dielectric dispersion in biological cells of complex geometry simulated by the three-dimensional finite difference method. J. Phys. D.: Appl. Phys. 39, 492–499 (2006)

    Article  ADS  Google Scholar 

  12. Ramos, A.: Improved numerical approach for electrical modeling of biological cell clusters. Med. Biol. Eng. Comput. 48, 311–319 (2010)

    Article  Google Scholar 

  13. Hoeber, R.: Eine Methode die elektrische Leitfäehigkeit im Innern von Zellen zu messen. Arch. Ges. Physiol. 133, 237–253 (1910)

    Article  Google Scholar 

  14. Hoeber, R.: Ein zweites Verfahren die Leitfäehigkeit im Innern von Zellen zu messen. Arch. Ges. Physiol. 148, 189–221 (1912)

    Article  Google Scholar 

  15. Hoeber, R.: Messungen der inneren Leitfäehigkeit von Zellen III. Arch. Ges. Physiol. 150, 15–45 (1913)

    Article  Google Scholar 

  16. Harris, C.M., Todd, R.W., Bungard, S.J., Lovitt, R.W., Morris, J.G., Keli, D.B.: Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass. Enzyme Microb. Technol. 9, 181–186 (1987)

    Article  Google Scholar 

  17. Noll, T., Biselli, M.: Dielectric spectroscopy in the cultivation of suspended and immobilized hybridoma cells. J. Biotechnol. 9, 187–198 (1998)

    Article  Google Scholar 

  18. Ducommun, P., Kadouri, A., von Stockar, U., Marison, I.W.: On-line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol. Bioeng. 77, 316–323 (2002)

    Article  Google Scholar 

  19. Cannizzaro, C., Gugerli, R., Marison, I., von Stockar, U.: On-line biomass monitoring of CHO perfusion culture with scanning dielectric spectroscopy. Biotechnol. Bioeng 84, 597–610 (2003)

    Article  Google Scholar 

  20. Ansorge, S., Esteban, G., Ghommidh, C., Schmid, G.: Monitoring nutrient limitations by online capacitance measurements in batch and fed-batch CHO fermentations. Conference Proceedings to the 19th ESACT Meeting: Cell Technology for Cell Products, Vol. 84, pp 723–726. Springer , Dordrecht/NL (2007)

    Google Scholar 

  21. Schnelle, T., Müller, T., Fuhr, G.: Dielectric single particle spectroscopy for measurement of dispersion. Med. Biol. Eng. Comput. 37, 264–271 (1999)

    Article  Google Scholar 

  22. Kun, S., Ristic, B., Peura, R.A., Dunn, R.M.: Real-time extraction of tissue impedance model parameters for electrical impedance spectrometer. Med. Biol. Eng. Comput. 37, 428–432 (1999)

    Article  Google Scholar 

  23. Kun, S., Peura, R.A.: Selection of measurement frequencies for optimal extraction of tissue impedance model parameters. Med. Biol. Eng. Comput. 37, 699–703 (1999)

    Article  Google Scholar 

  24. Bordi, F., Cametti, C., Gili, T.: Dielectric spectroscopy of erythrocyte cell suspensions. A comparison between Looyenga and Maxwell–Wagner–Hanai effective medium theory formulations. J. Non-Cryst. Solids 305 (1), 278–284 (2002)

    Article  ADS  Google Scholar 

  25. Chelidze, T.: Dielectric spectroscopy of blood. J. Non-Cryst. Solids 305(1), 285–294 (2002)

    Article  ADS  Google Scholar 

  26. Aleksander, P.S., Stiz, R.A., Bertemes-Filho, P.: Frequency-domain reconstruction of signals in electrical bioimpedance spectroscopy. Med. Biol. Eng. Comput. 47, 1093–1102 (2009)

    Article  Google Scholar 

  27. Asami, K.: Characterization of heterogeneous systems by dielectric spectroscopy. Prog. Polym. Sci. 27, 1617–1659 (2002)

    Article  Google Scholar 

  28. Wagner, K.W.: Erklärung der Dielectrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Arch. Electrotech. 2, 371–387 (1914)

    Article  Google Scholar 

  29. Maxwell, J.C.: Treatise on Electricity and Magnetism. Clarendon, Oxford (1891)

    Google Scholar 

  30. Debye, P.: Polar Molecules. Dover, New York (1954)

    Google Scholar 

  31. Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of bi-cg for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 2, 631–644 (1992)

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the research project: Assessment techniques of three-dimensional (3D) cell growth and morphology in microgravity using electromagnetic diffraction, realized through the Italian Space Agency (ASI) co-financing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Muzi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frezza, F., Mangini, F., Muzi, M. et al. In silico validation procedure for cell volume fraction estimation through dielectric spectroscopy. J Biol Phys 41, 223–234 (2015). https://doi.org/10.1007/s10867-014-9374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-014-9374-8

Keywords

Navigation