Skip to main content

Non-invasive Cellular Characterization Using Bioimpedance Sensing

  • Chapter
  • First Online:
BioSensing, Theranostics, and Medical Devices
  • 775 Accesses

Abstract

Bioimpedance spectroscopy is one of the widely established interdisciplinary techniques used in cancer research for exploring electrophysiological features. Bioimpedance provides a real time, label-free, highly sensitive, cost-effective, and in vitro monitoring of living cells. The present chapter focuses on development of bioimpedimetric technology for exploring the biophysical properties of cancerous and normal cells in a suitable microenvironment. The chapter describes the detailed design and fabrication of a bioimpedance sensor, along with the experimental measurement for measuring impedance behavior of living cells. Initially, a numerical simulation has been presented to investigate the electric field distribution among electrode–cell–media interface and thereby operating frequency range has been identified. Subsequently, a novel fragmental frequency analysis method has been demonstrated to estimate the electrical parameters of group of cells from the experimental impedance data. Finally, a simple but detailed analysis technique has been developed to extract the electrical properties of a single cell from the previously collected bioimpedance response of a colony of cells. The investigation presented in this chapter provides an alternative approach to theoretically calculate equivalent electrical parameters of group of cells on the electrode surface and helps to extract electrical properties of a single cell from the bioimpedance spectroscopy of a cell colony during cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, J. (2014). Nanobiomechanics of living cells: A review. Interface Focus, 4(2), 20130055.

    Article  Google Scholar 

  2. Rehman, A., Firdous, S., Nawaz, M., & Ahmad, M. (2012). Optical parameters measurement for diagnostic and photodynamic therapy of human cervical adenocarcinoma (HeLa) cell line. Laser Physics, 22(1), 322–326. https://doi.org/10.1134/s1054660x12010161

    Article  CAS  Google Scholar 

  3. Yang, L., Arias, L. R., Lane, T., Yancey, M., & Mamouni, J. (2011). Real-time electrical impedance-based measurement to distinguish oral cancer cells and non-cancer oral epithelial cells. Analytical and Bioanalytical Chemistry, 399(5), 1823–1833. https://doi.org/10.1007/s00216-010-4584-9

    Article  CAS  PubMed  Google Scholar 

  4. Kumar, A., Purohit, B., Maurya, P. K., Pandey, L. M., & Chandra, P. (2019). Engineered nanomaterial assisted signal-amplification strategies for enhancing analytical performance of electrochemical biosensors. Electroanalysis, 31(9), 1615–1629.

    Article  CAS  Google Scholar 

  5. Das, D., Kamil, F. A., Agrawal, S., Biswas, K., & Das, S. (2014). Fragmental frequency analysis method to estimate electrical cell parameters from bioimpedance study. IEEE Transactions on Instrumentation and Measurement, 63(8), 1991–2000.

    Article  Google Scholar 

  6. Sarró, E., Lecina, M., Fontova, A., et al. (2012). Electrical impedance spectroscopy measurements using a four-electrode configuration improve on-line monitoring of cell concentration in adherent animal cell cultures. Biosensors & Bioelectronics, 31(1), 257–263. https://doi.org/10.1016/j.bios.2011.10.028.

    Article  CAS  Google Scholar 

  7. Rahman, A. R. A., Lo, C.-M., & Bhansali, S. (2006). A micro-electrode array biosensor for impedance spectroscopy of human umbilical vein endothelial cells. Sensors and Actuators B: Chemical, 118(1–2), 115–120. https://doi.org/10.1016/j.snb.2006.04.060.

    Article  CAS  Google Scholar 

  8. Gawad, S., Schild, L., & Renaud, P. (2001). Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab on a Chip, 1(1), 76–82. https://doi.org/10.1039/b103933b.

    Article  CAS  PubMed  Google Scholar 

  9. Wang, M.-H., & Jang, L.-S. (2009). A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations. Biosensors & Bioelectronics, 24(9), 2830–2835. https://doi.org/10.1016/j.bios.2009.02.012.

    Article  CAS  Google Scholar 

  10. Asphahani, F., Wang, K., Thein, M., et al. (2011). Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment. Physical Biology, 8(1), 015006.

    Article  Google Scholar 

  11. Giaever, I., & Keese, C. R. (1993). A morphological biosensor for mammalian cells. Nature, 366(6455), 591.

    Article  CAS  Google Scholar 

  12. Giaever, I., & Keese, C. R. (1991). Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Sciences, 88(17), 7896–7900.

    Article  CAS  Google Scholar 

  13. Lo, C. M., Keese, C. R., & Giaever, I. (1995). Impedance analysis of MDCK cells measured by electric cell-substrate impedance sensing. Biophysical Journal, 69(6), 2800–2807. https://doi.org/10.1016/S0006-3495(95)80153-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rahman, A. R. A., Chun-Min, L., & Bhansali, S. (2009). A detailed model for high-frequency impedance characterization of ovarian Cancer epithelial cell layer using ECIS electrodes. IEEE Transactions on Biomedical Engineering, 56(2), 485–492. https://doi.org/10.1109/tbme.2008.2008488.

    Article  PubMed  Google Scholar 

  15. Pradhan, R., Mitra, A., & Das, S. (2012). Impedimetric characterization of human blood using three-electrode based ECIS devices. Journal of Electrical Bioimpedance, 3(1), 12–19.

    Article  Google Scholar 

  16. Orazem, M. E., & Tribollet, B. (2008). Electrochemical impedance spectroscopy. Hoboken, NJ: Wiley-VCH.

    Book  Google Scholar 

  17. Das, D., Kamil, F. A., Biswas, K., & Das, S. (2014). Evaluation of single cell electrical parameters from bioimpedance of a cell suspension. RSC Advances, 4(35), 18178–18185.

    Article  CAS  Google Scholar 

  18. Agilent. (2002). Agilent 4294A precision impedance analyzer operation manual.

    Google Scholar 

  19. Gawad, S., Henschkel, M., Leung-Ki, Y., et al. (2000). Fabrication of a microfluidic cell analyzer in a microchannel using impedance spectroscopy. In 1st Annual International, Conference On 2000 Microtechnologies in Medicine and Biology, pp. 297–301.

    Google Scholar 

  20. Wegener, J., Zink, S., Rosen, P., & GAlla, H. (1999). Use of electrochemical impedance measurements to monitor B-adrenergic stimulation of bovine aortic endothelial cells. Pflügers Archiv - European Journal of Physiology, 437, 925–934.

    Article  CAS  Google Scholar 

  21. Gill, P. E., & Murray, W. (1978). Algorithms for the solution of the nonlinear least-squares problem. SIAM Journal on Numerical Analysis, 15(5), 977–992. https://doi.org/10.2307/2156716.

    Article  Google Scholar 

  22. Nocedal, J., & Wright, S. J. (1999). Numerical optimization. New York: Springer.

    Book  Google Scholar 

  23. Pujol, J. (2007). The solution of nonlinear inverse problems and the Levenberg-Marquardt method. Geophysics, 72(4), W1–W16. https://doi.org/10.1190/1.2732552.

    Article  Google Scholar 

  24. Lvovich, V. F. (2012). Impedance spectroscopy: Applications to electrochemical and dielectric phenomena. Boca Raton, FL: Wiley.

    Book  Google Scholar 

  25. Han, A., Yang, L., & Frazier, A. B. (2007). Quantification of the heterogeneity in breast Cancer cell lines using whole-cell impedance spectroscopy. Clinical Cancer Research, 13(1), 139–143. https://doi.org/10.1158/1078-0432.ccr-06-1346.

    Article  PubMed  Google Scholar 

  26. Jang, L.-S., & Wang, M.-H. (2007). Microfluidic device for cell capture and impedance measurement. Biomedical Microdevices, 9(5), 737–743. https://doi.org/10.1007/s10544-007-9084-0.

    Article  PubMed  Google Scholar 

  27. Skelley, A., Kirak, O., Suh, H., Jaenisch, R., & Voldman, J. (2009). Microfluidic control of cell pairing and fusion. Nature Methods, 6(2), 147–152.

    Article  CAS  Google Scholar 

  28. Carlo, D. D., Wu, L. Y., & Lee, L. P. (2006). Dynamic single cell culture array. Lab on a Chip, 6(11), 1445–1449. https://doi.org/10.1039/b605937f.

    Article  CAS  PubMed  Google Scholar 

  29. Abdur Rahman, A. R., Price, D. T., & Bhansali, S. (2007). Effect of electrode geometry on the impedance evaluation of tissue and cell culture. Sensors and Actuators B: Chemical, 127(1), 89–96. https://doi.org/10.1016/j.snb.2007.07.038.

    Article  CAS  Google Scholar 

  30. Schwan, H. P. (1992). Linear and nonlinear electrode polarization and biological materials. Annals of Biomedical Engineering, 20(3), 269–288. https://doi.org/10.1007/bf02368531.

    Article  CAS  PubMed  Google Scholar 

  31. Sun, T., & Morgan, H. (2010). Single-cell microfluidic impedance cytometry: A review. Microfluidics and Nanofluidics, 8(4), 423–443. https://doi.org/10.1007/s10404-010-0580-9.

    Article  CAS  Google Scholar 

  32. Hanai, T., Asami, K., & Koizumi, N. (1979). Dielectric theory of concentrated suspensions of shell-spheres in particular reference to the analysis of biological cell suspensions. Bulletin of the Institute for Chemical Research, 57, 297–305.

    CAS  Google Scholar 

  33. Hanai, T., Koizumi, N., & Irimajiri, A. (1975). A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological relevance. Biophysics of Structure and Mechanism, 1(4), 285–294. https://doi.org/10.1007/bf00537642.

    Article  CAS  PubMed  Google Scholar 

  34. Foster, K. R., & Schwan, H. P. (1989). Dielectric properties of tissues and biological materials: A critical review. Critical Reviews in Biomedical Engineering, 17(1), 25–104.

    CAS  PubMed  Google Scholar 

  35. Orjan, G., & Martinsen, S. G. (2008). Bioimpedance and bioelectricity basics (2nd ed.). London: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Das, D., Das, S. (2022). Non-invasive Cellular Characterization Using Bioimpedance Sensing. In: Borse, V., Chandra, P., Srivastava, R. (eds) BioSensing, Theranostics, and Medical Devices. Springer, Singapore. https://doi.org/10.1007/978-981-16-2782-8_6

Download citation

Publish with us

Policies and ethics