Skip to main content
Log in

Mitochondria as a target of cardioprotection in models of preconditioning

  • Mini-review
  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Over the recent years the view on mitochondria in the heart as a cellular powerhouse providing ATP supply needed to sustain contractile function, basal metabolic processes, and ionic homeostasis has changed radically. At present it is known that dysfunctions of these organelles are essential in the development of a large number of diseases, including cardiovascular diseases. Moreover, mitochondria are considered to be a very promising target of endogenous strategies that are essential in the protection of the myocardium from acute ischemia/reperfusion injury. These strategies including ischemic preconditioning, remote ischemic preconditioning as well as the acute phase of streptozotocin-induced diabetes mellitus, provide a similar effect of protection. Alterations observed in the functional and structural properties of heart mitochondria caused by short-term pathological impulses are associated with endogenous cardioprotective processes. It seems that the extent of mitochondrial membrane fluidization could be an active response mechanism to injury with a subtle effect on membrane-associated processes which further affect the environment of the whole organelle, thus inducing metabolic changes in the heart. In this review article, we provide an overview of endogenous protective mechanisms induced by hypoxic, pseudohypoxic and ischemic conditions with special consideration of the role of heart mitochondria in these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adameova A, Dhalla NS (2014) Role of microangiopathy in diabetic cardiomyopathy. Heart Fail Rev 19(1):25–33. doi:10.1007/s10741-013-9378-7

    Article  Google Scholar 

  • Airley R, Loncaster J, Davidson S, Bromley M, Roberts S, Patterson A, Hunter R, Stratford I, West C (2001) Glucose transporter glut-1 expression correlates with tumor hypoxia and predicts metastasis-free survival in advanced carcinoma of the cervix. Clin Cancer Res 7(4):928–934

    CAS  Google Scholar 

  • Ajith TA, Jayakumar TG (2014) Mitochondria-targeted agents: future perspectives of mitochondrial pharmaceutics in cardiovascular diseases. World J Cardiol 6(10):1091–1099. doi:10.4330/wjc.v6.i10.1091

    Article  Google Scholar 

  • Altamimi TR, Lopaschuk GD (2015) Diabetes and ischemia: similarities in cardiac energy metabolism. Heart Metab 68:4–8

    Google Scholar 

  • Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278:44735–44744

    Article  CAS  Google Scholar 

  • Auchampach JA, Grover GJ, Gross GJ (1992) Blockade of ischaemic preconditioning in dogs by the novel ATP dependent potassium channel antagonist sodium 5-hydroxydecanoate. Cardiovasc Res 26(11):1054–1062

    Article  CAS  Google Scholar 

  • Ayee MA, Levitan I (2016) Paradoxical impact of cholesterol on lipid packing and cell stiffness. Front Biosci (Landmark Ed) 21:1245–1259

    Article  Google Scholar 

  • Azzi A, Azzone GF (1967) Swelling and shrinkage phenomena in liver mitochondria. VI. Metabolism-independent swelling coupled to ion movement. Biochim Biophys Acta 131:468–478

    Article  CAS  Google Scholar 

  • Baba N, Sharma HM (1971) Histochemistry of lactic dehydrogenase in heart and pectoralis muscles of rat. J Cell Biol 51(3):621–635

    Article  CAS  Google Scholar 

  • Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, Ping P (2003) Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92(8):873–880

    Article  CAS  Google Scholar 

  • Beutner G, Alavian KN, Jonas EA, Porter GA Jr (2016) Erratum to: The mitochondrial permeability transition pore and ATP synthase. Handb Exp Pharmacol. doi:10.1007/164_2016_87

  • Birnbaum Y, Hale SL, Kloner RA (1997) Ischemic preconditioning at a distance: reduction of myocardial infarct size by partial reduction of blood supply combined with rapid stimulation of the gastrocnemius muscle in the rabbit. Circulation 96:1641–1646

    Article  CAS  Google Scholar 

  • Camici P, Ferrannini E, Opie LH (1989) Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis 32(3):217–238

    Article  CAS  Google Scholar 

  • Capetanaki Y (2002) Desmin cytoskeleton: a potential regulator of muscle mitochondrial behavior and function. Trends Cardiovasc Med 12(8):339–348

    Article  CAS  Google Scholar 

  • Chen Q, Lesnefsky EJ (2006) Depletion of cardiolipin and cytochrome c during ischemia increases hydrogen peroxide production from the electron transport chain. Free Radic Biol Med 40(6):976–982

    Article  CAS  Google Scholar 

  • Chen H, Shen WL, Wang XH, Chen HZ, Gu JZ, Fu J, Ni YF, Gao PJ, Zhu DL, Higashino H (2006) Paradoxically enhanced heart tolerance to ischaemia in type 1 diabetes and role of increased osmolarity. Clin Exp Pharmacol Physiol 33(10):910–916

    Article  CAS  Google Scholar 

  • Chu LM, Osipov RM, Robich MP, Feng J, Oyamada S, Bianchi C, Sellke FW (2010) Is hyperglycemia bad for the heart during acute ischemia? J Thorac Cardiovasc Surg 140(6):1345–1352. doi:10.1016/j.jtcvs.2010.05.009

    Article  Google Scholar 

  • Colell A, García-Ruiz C, Lluis JM, Coll O, Mari M, Fernández-Checa JC (2003) Cholesterol impairs the adenine nucleotide translocator-mediated mitochondrial permeability transition through altered membrane fluidity. J Biol Chem 278(36):33928–33935

    Article  CAS  Google Scholar 

  • Contessi S, Metelli G, Mavelli I, Lippe G (2004) Diazoxide affects the IF1 inhibitor protein binding to F1 sector of beef heart F0F1ATPsynthase. Biochem Pharmacol 67(10):1843–1851

    Article  CAS  Google Scholar 

  • Cruz RS, de Aguiar RA, Turnes T, Penteado Dos Santos R, de Oliveira MF, Caputo F (2012) Intracellular shuttle: the lactate aerobic metabolism. ScientificWorldJournal 2012:420984. doi:10.1100/2012/420984

    Article  CAS  Google Scholar 

  • Dennis SC, Gevers W, Opie LH (1991) Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 23(9):1077–1086

    Article  CAS  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70(2):191–199

    Article  CAS  Google Scholar 

  • Dong HL, Zhang Y, Su BX, Zhu ZH, Gu QH, Sang HF, Xiong L (2010) Limb remote ischemic preconditioning protects the spinal cord from ischemia-reperfusion injury: a newly identified nonneuronal but reactive oxygen species-dependent pathway. Anesthesiology 112(4):881–891. doi:10.1097/ALN.0b013e3181d0486d

    Article  Google Scholar 

  • Feillet-Coudray C, Fouret G, Casas F, Coudray C (2014) Impact of high dietary lipid intake and related metabolic disorders on the abundance and acyl composition of the unique mitochondrial phospholipid, cardiolipin. J Bioenerg Biomembr 46(5):447–457. doi:10.1007/s10863-014-9555-y

    Article  CAS  Google Scholar 

  • Ferdinandy P, Schulz R, Baxter GF (2007) Interaction of cardiovascular risk factors with myocardial ischemia/reperfusion injury, preconditioning, and postconditioning. Pharmacol Rev 59(4):418–458

    Article  CAS  Google Scholar 

  • Ferko M, Gvozdjaková A, Kucharská J, Mujkosová J, Waczulíková I, Styk J, Ravingerová T, Ziegelhöffer-Mihalovicová B, Ziegelhöffer A (2006) Functional remodeling of heart mitochondria in acute diabetes: interrelationships between damage, endogenous protection and adaptation. Gen Physiol Biophys 25(4):397–413

    CAS  Google Scholar 

  • Ferko M, Kancirová I, Jašová M, Čarnická S, Muráriková M, Waczulíková I, Sumbalová Z, Kucharská J, Uličná O, Ravingerová T, Ziegelhöffer A (2014) Remote ischemic preconditioning of the heart: protective responses in functional and biophysical properties of cardiac mitochondria. Physiol Res 63(Suppl 4):S469–S478

  • Ferko M, Habodászová D, Waczulíková I, Mujkosová J, Kucharská J, Sikurová L, Ziegelhoffer B, Styk J, Ziegelhoffer A (2008) Endogenous protective mechanisms in remodeling of rat heart mitochondrial membranes in the acute phase of streptozotocin-induced diabetes. Physiol Res 57(2):S67–S73

    CAS  Google Scholar 

  • Ferko M, Kancirová I, Jašová M, Waczulíková I, Čarnická S, Kucharská J, Uličná O, Vančová O, Muráriková M, Ravingerová T, Ziegelhöffer A (2015) Participation of heart mitochondria in myocardial protection against ischemia/reperfusion injury: benefit effects of short-term adaptation processes. Physiol Res 64(5):S617–S625

    CAS  Google Scholar 

  • Fillmore N, Lopaschuk GD (2013) Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta 1833(4):857–865. doi:10.1016/j.bbamcr.2012.08.014

    Article  CAS  Google Scholar 

  • Fillmore N, Mori J, Lopaschuk GD (2014) Mitochondrial fatty acid oxidation alterations in heart failure, ischaemic heart disease and diabetic cardiomyopathy. Br J Pharmacol 171(8):2080–2090. doi:10.1111/bph.12475

    Article  CAS  Google Scholar 

  • Fryer RM, Eells JT, Hsu AK, Henry MM, Gross GJ (2000) Ischemic preconditioning in rats: role of mitochondrial K(ATP) channel in preservation of mitochondrial function. Am J Physiol Heart Circ Physiol 278(1):H305–H312

    CAS  Google Scholar 

  • Gertz EW, Wisneski JA, Stanley WC, Neese RA (1988) Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest 82(6):2017–2025 PubMed PMID: 3198763; PubMed Central PMCID: PMC442784

    Article  CAS  Google Scholar 

  • Gho BC, Schoemaker RG, van den Doel MA, Duncker DJ, Verdouw PD (1996) Myocardial protection by brief ischemia in noncardiac tissue. Circulation 94:2193–2200

    Article  CAS  Google Scholar 

  • Gøtzsche O (1985) Abnormal myocardial calcium uptake in streptozocin-diabetic rats. Evidence for a direct insulin effect on catecholamine sensitivity. Diabetes 34(3):287–290

    Article  Google Scholar 

  • Griffiths EJ, Ocampo CJ, Savage JS, Rutter GA, Hansford RG, Stern MD, Silverman HS (1998) Mitochondrial calcium transporting pathways during hypoxia and reoxygenation in single rat cardiomyocytes. Cardiovasc Res 39(2):423–433

    Article  CAS  Google Scholar 

  • Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 1767(8):1007–1031

    Article  CAS  Google Scholar 

  • Harmancey R, Vasquez HG, Guthrie PH, Taegtmeyer H (2013) Decreased long-chain fatty acid oxidation impairs postischemic recovery of the insulin-resistant rat heart. FASEB J 27(10):3966–3978. doi:10.1096/ fj.13-234914

    Article  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM (2004) New directions for protecting the heart against ischaemia-reperfusion injury: targeting the reperfusion injury salvage kinase (RISK)-pathway. Cardiovasc Res 61:448–460. doi:10.1016/j.cardiores.2003.09.024

    Article  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM (2016) Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol 13(4):193–209. doi:10.1038/nrcardio.2016.5

    Article  CAS  Google Scholar 

  • Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM (2002) Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res 55(3):534–543

    Article  CAS  Google Scholar 

  • Hausenloy DJ, Yellon DM, Mani-Babu S, Duchen MR (2004a) Preconditioning protects by inhibiting the mitochondrial permeability transition. Am J Physiol Heart Circ Physiol 287(2):H841–H849

    Article  CAS  Google Scholar 

  • Hausenloy DJ, Wynne A, Duchen M, Yellon D (2004b) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109(14):1714–1717

    Article  CAS  Google Scholar 

  • Hendrickson SC, St Louis JD, Lowe JE, Abdel-aleem S (1997) Free fatty acid metabolism during myocardial ischemia and reperfusion. Mol Cell Biochem 166(1–2):85–94

    Article  CAS  Google Scholar 

  • Holotnakova T, Ziegelhoffer A, Ohradanova A, Hulikova A, Novakova M, Kopacek J, Pastorek J, Pastorekova S (2007) Induction of carbonic anhydrase IX by hypoxia and chemical disruption of oxygen sensing in rat fibroblasts and cardiomyocytes. Pflugers Arch 456(2):323–337

    Article  CAS  Google Scholar 

  • Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52(4):590–614. doi:10.1016/j.plipres.2013.07.002

    Article  CAS  Google Scholar 

  • Hrdlička J, Neckář J, Papoušek F, Vašinová J, Alánová P, Kolář F (2016) Beneficial effect of continuous normobaric hypoxia on ventricular dilatation in rats with post-infarction heart failure. Physiol Res 65(5):867–870

    Google Scholar 

  • Huss JM, Kelly DP (2004) Nuclear receptor signaling and cardiac energetics. Circ Res 95:568–578

    Article  CAS  Google Scholar 

  • Jašová M, Kancirová I, Muráriková M, Farkašová V, Waczulíková I, Ravingerová T, Ziegelhöffer A, Ferko M (2016) Stimulation of mitochondrial ATP synthase activity - a new diazoxide-mediated mechanism of cardioprotection. Physiol Res 65(1):S119–S227

    Google Scholar 

  • Jaswal JS, Cadete VJJ, Lopaschuk GD (2008) Optimizing cardiac energy substrate metabolism: a novel therapeutic intervention for ischemic heart disease. Heart Metab 38:5–14

    Google Scholar 

  • Jaswal JS, Keung W, Wan W, Ussher JR, Lopaschuk GD (2011) Targeting fatty acid and carbohydrate oxidation – a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta 1813:1333–1350. doi:10.1016/j.bbamcr.2011.01.015

    Article  CAS  Google Scholar 

  • Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549(Pt 2):513–524

    Article  CAS  Google Scholar 

  • Ji L, Zhang X, Liu W, Huang Q, Yang W, Fu F, Ma H, Su H, Wang H, Wang J, Zhang H, Gao F (2013) AMPK-regulated and Akt-dependent enhancement of glucose uptake is essential in ischemic preconditioning-alleviated reperfusion injury. PLoS One 8(7):e69910. doi:10.1371/journal.pone.0069910

    Article  CAS  Google Scholar 

  • Kalogeris T, Bao Y, Korthuis RJ (2014) Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol 2:702–714. doi:10.1016/j.redox.2014.05.006

    Article  CAS  Google Scholar 

  • Kerendi F, Kin H, Halkos ME, Jiang R, Zatta AJ, Zhao ZQ, Guyton RA, Vinten-Johansen J (2005) Remote postconditioning. Brief renal ischemia and reperfusion applied before coronary artery reperfusion reduces myocardial infarct size via endogenous activation of adenosine receptors. Basic Res Cardiol 100(5):404–412

    Article  CAS  Google Scholar 

  • Khaliulin I, Parker JE, Halestrap AP (2010) Consecutive pharmacological activation of PKA and PKC mimics the potent cardioprotection of temperature preconditioning. Cardiovasc Res 88(2):324–333. doi:10.1093/cvr/cvq190

    Article  CAS  Google Scholar 

  • King AJF (2012) The use of animal models in diabetes research. Br J Pharmacol 166(3):877–894. doi:10.1111/j.1476-5381.2012.01911.x

    Article  CAS  Google Scholar 

  • Kristian T, Bernardi P, Siesjö BK (2001) Acidosis promotes the permeability transition in energized mitochondria: implications for reperfusion injury. J Neurotrauma 18(10):1059–1074

    Article  CAS  Google Scholar 

  • Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, Nanjo K, Sasaki A, Seino Y, Ito C, Shima K, Nonaka K, Kadowaki T (2002) Report of the committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Res Clin Pract 55(1):65–85

    Article  Google Scholar 

  • Labieniec M, Przygodzki T, Cársky J, Malinska D, Rysz J, Watala C (2009) Effects of resorcylidene aminoguanidine (RAG) on selected parameters of isolated rat liver mitochondria. Chem Biol Interact 179(2–3):280–287. doi:10.1016/j.cbi.2008.11.005

    Article  CAS  Google Scholar 

  • Lecour S (2009) Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? J Mol Cell Cardiol 47:32–40. doi:10.1016/j.yjmcc.2009.03.019

    Article  CAS  Google Scholar 

  • Liepinsh E, Makrecka M, Kuka J, Makarova E, Vilskersts R, Cirule H, Sevostjanovs E, Grinberga S, Pugovics O, Dambrova M (2014) The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism 63(1):127–136. doi:10.1016/j.metabol.2013.09.014

    Article  CAS  Google Scholar 

  • Liochev SI (2013) Reactive oxygen species and the free radical theory of aging. Free Radic Biol Med 60:1–4. doi:10.1016/j.freeradbiomed.2013.02.011

    Article  CAS  Google Scholar 

  • Liu Y, Sato T, O'Rourke B, Marban E (1998) Mitochondrial ATP-dependent potassium channels: novel effectors of cardioprotection? Circulation 97(24):2463–2469

    Article  CAS  Google Scholar 

  • Lopaschuk GD, Belke DD, Gamble J, Itoi T, Schönekess BO (1994) Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1213(3):263–276

    Article  CAS  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258

    Article  CAS  Google Scholar 

  • Lucas AM, Caldas FR, da Silva AP, Ventura MM, Leite IM, Filgueiras AB, Silva CG, Kowaltowski AJ, Facundo HT (2017) Diazoxide prevents reactive oxygen species and mitochondrial damage, leading to anti-hypertrophic effects. Chem Biol Interact 261:50–55. doi:10.1016/j.cbi.2016.11.012 PubMed PMID: 27867086

    Article  CAS  Google Scholar 

  • Máleková L, Kominková V, Ferko M, Štefánik P, Križanová O, Ziegelhöffer A, Szewyczyk A, Ondriáš K (2007) Bongkrekic acid and atractyloside inhibits chloride channels from mitochondrial membranes of rat heart. Biochim Biophys Acta 1767:31–44

  • Malfitano C, Alba Loureiro TC, Rodrigues B, Sirvente R, Salemi VM, Rabechi NB, Lacchini S, Curi R, Irigoyen MC (2010) Hyperglycaemia protects the heart after myocardial infarction: aspects of programmed cell survival and cell death. Eur J Heart Fail 12(7):659–667. doi:10.1093/eurjhf/hfq053

    Article  CAS  Google Scholar 

  • Malfitano C, Barboza CA, Mostarda C, da Palma RK, dos Santos CP, Rodrigues B, Freitas SC, Belló-Klein A, Llesuy S, Irigoyen MC, De Angelis K (2014) Diabetic hyperglycemia attenuates sympathetic dysfunction and oxidative stress after myocardial infarction in rats. Cardiovasc Diabetol 13:131. doi:10.1186/s12933-014-0131-x

    Article  CAS  Google Scholar 

  • Malfitano C, de Souza Junior AL, Carbonaro M, Bolsoni-Lopes A, Figueroa D, de Souza LE, Silva KA, Consolim-Colombo F, Curi R, Irigoyen MC (2015) Glucose and fatty acid metabolism in infarcted heart from streptozotocin-induced diabetic rats after 2 weeks of tissue remodeling. Cardiovasc Diabetol 14:149. doi:10.1186/s12933-015-0308-y

    Article  CAS  Google Scholar 

  • Marban E, Koretsune Y, Kusuoka H (1994) Disruption of intracellular Ca2+ homeostasis in hearts reperfused after prolonged episodes of ischemia. Ann N Y Acad Sci 723:38–50

    Article  CAS  Google Scholar 

  • Maslov LN, Naryzhnaia NV, Podoksenov IK, Prokudina ES, Gorbunov AS, Zhang I, Peĭ ZM (2015) Reactive oxygen species are triggers and mediators of an increase in cardiac tolerance to impact of ischemia-reperfusion. Ross Fiziol Zh Im I M Sechenova 101(1):3–24

    CAS  Google Scholar 

  • Mileykovskaya E, Zhang M, Dowhan W (2005) Cardiolipin in energy transducing membranes. Biochemistry (Mosc) 70(2):154–158

    Article  CAS  Google Scholar 

  • Moon CH, Jung YS, Lee SH, Baik EJ (1999) Protein kinase C inhibitors abolish the increased resistance of diabetic rat heart to ischemia-reperfusion injury. Jpn J Physiol 49(5):409–415

    Article  CAS  Google Scholar 

  • Moses MA, Addison PD, Neligan PC, Ashrafpour H, Huang N, Zair M, Rassuli A, Forrest CR, Grover GJ, Pang CY (2005) Am J Physiol Heart Circ Physiol 288(2):H559–H567

    Article  CAS  Google Scholar 

  • Mujkošová J, Ferko M, Humeník P, Waczulíková I, Ziegelhoffer A (2008) Seasonal variations in properties of healthy and diabetic rat heart mitochondria: Mg2+−ATPase activity, content of conjugated dienes and membrane fluidity. Physiol Res 57(Suppl 2):S75–S82

    Google Scholar 

  • Muntean DM, Sturza A, Dănilă MD, Borza C, Duicu OM, Mornoș C (2016) The role of mitochondrial reactive oxygen species in cardiovascular injury and protective strategies. Oxidative Med Cell Longev 2016:8254942. doi:10.1155/2016/8254942

    Article  Google Scholar 

  • Murphy RC, Johnson KM (2008) Cholesterol, reactive oxygen species, and the formation of biologically active mediators. J Biol Chem 283:15521–15525. doi:10.1074/jbc.R700049200

    Article  CAS  Google Scholar 

  • Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74(5):1124–1136

    Article  CAS  Google Scholar 

  • Nakashima RA, Mangan PS, Colombini M, Pedersen PL (1986) Hexokinase receptor complex in hepatoma mitochondria: evidence from N,N'-dicyclohexylcarbodiimide-labeling studies for the involvement of the pore-forming protein VDAC. Biochemistry 25(5):1015–1021

    Article  CAS  Google Scholar 

  • Neckář J, Szárszoi O, Koten L, Papousek F, Ošt'ádal B, Grover GJ, Kolár F (2002) Effects of mitochondrial K(ATP) modulators on cardioprotection induced by chronic high altitude hypoxia in rats. Cardiovasc Res 55(3):567–575

    Article  Google Scholar 

  • Nederlof R, Eerbeek O, Hollmann MW, Southworth R, Zuurbier CJ (2014) Targeting hexokinase II to mitochondria to modulate energy metabolism and reduce ischaemia-reperfusion injury in heart. Br J Pharmacol 171(8):2067–2079. doi:10.1111/bph.12363

    Article  CAS  Google Scholar 

  • Ohnuma Y, Miura T, Miki T, Tanno M, Kuno A, Tsuchida A, Shimamoto K (2002) Opening of mitochondrial K(ATP) channel occurs downstream of PKC-epsilon activation in the mechanism of preconditioning. Am J Physiol Heart Circ Physiol 283(1):H440–H447

    Article  CAS  Google Scholar 

  • Ong SB, Subrayan S, Lim SY, Yellon DM, Davidson SM, Hausenloy DJ (2010) Inhibiting mitochondrial fission protects the heart against ischemia/reperfusion injury. Circulation 121(18):2012–2022. doi:10.1161/CIRCULATIONAHA.109.906610

    Article  CAS  Google Scholar 

  • Ong SB, Dongworth RK, Cabrera-Fuentes HA, Hausenloy DJ (2015a) Role of the MPTP in conditioning the heart - translatability and mechanism. Br J Pharmacol 172(8):2074–2084. doi:10.1111/bph.13013

    Article  CAS  Google Scholar 

  • Ong SB, Samangouei P, Kalkhoran SB, Hausenloy DJ (2015b) The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol 78:23–34. doi:10.1016/j.yjmcc

    Article  CAS  Google Scholar 

  • Otani H (2004) Reactive oxygen species as mediators of signal transduction in ischemic preconditioning. Antioxid Redox Signal 6(2):449–469

    Article  CAS  Google Scholar 

  • Panchal AR, Comte B, Huang H, Dudar B, Roth B, Chandler M, Des Rosiers C, Brunengraber H, Stanley WC (2001) Acute hibernation decreases myocardial pyruvate carboxylation and citrate release. Am J Physiol Heart Circ Physiol 281(4):H1613–H1620

    CAS  Google Scholar 

  • Paradies G, Petrosillo G, Pistolese M, Di Venosa N, Serena D, Ruggiero FM (1999) Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med 27(1–2):42–50

    Article  CAS  Google Scholar 

  • Paradis S, Leoni V, Caccia C, Berdeaux A, Morin D (2013) Cardioprotection by the TSPO ligand 4′-chlorodiazepam is associated with inhibition of mitochondrial accumulation of cholesterol at reperfusion. Cardiovasc Res 98(3):420–427. doi:10.1093/cvr/cvt079

    Article  CAS  Google Scholar 

  • Park UJ, Kim HT, Cho WH, Park JH, Jung HR, Kim MY (2016) Remote ischemic preconditioning enhances the expression of genes encoding antioxidant enzymes and endoplasmic reticulum stress-related proteins in rat skeletal muscle. Vasc Specialist Int 32(4):141–149. doi:10.5758/vsi.2016.32.4.141

    Article  Google Scholar 

  • Petrosillo G, Matera M, Moro N, Ruggiero FM, Paradies G (2009) Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med 46(1):88–94. doi:10.1016/j.freeradbiomed.2008.09.031

  • Pierce GN, Dhalla NS (1981) Cardiac myofibrillar ATPase activity in diabetic rats. J Mol Cell Cardiol 13:1063–1069

    Article  CAS  Google Scholar 

  • Pike MM, Luo CS, Clark MD, Kirk KA, Kitakaze M, Madden MC, Cragoe EJ Jr, Pohost GM (1993) NMR measurements of Na and cellular energy in the ischemic rat heart: role of Na/H exchange. Am J Physiol Heart Circ Physiol 265:H2017–H2026

    CAS  Google Scholar 

  • Pound KM, Sorokina N, Ballal K, Berkich DA, Fasano M, Lanoue KF, Taegtmeyer H, O'Donnell JM, Lewandowski ED (2009) Substrate-enzyme competition attenuates upregulated anaplerotic flux through malic enzyme in hypertrophied rat heart and restores triacylglyceride content: attenuating upregulated anaplerosis in hypertrophy. Circ Res 104(6):805–812. doi:10.1161/CIRCRESAHA.108.189951

    Article  CAS  Google Scholar 

  • Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic 'preconditioning' protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87(3):893–899

    Article  CAS  Google Scholar 

  • Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 281:785–789

    Article  Google Scholar 

  • Ravingerová T, Štetka R, Volkovová K, Pancza D, Džurba A, Ziegelhöffer A, Styk J (2000) Acute diabetes modulates response to ischemia in isolated rat heart. Mol Cell Biochem 210(1–2):143–151

    Article  Google Scholar 

  • Ravingerová T, Štetka R, Barančík M, Volkovová K, Pancza D, Ziegelhöffer A, Styk J (2001) Response to ischemia and endogenous myocardial protection in the diabetic heart. Adv Exp Med Biol 498:285–293

    Article  Google Scholar 

  • Ravingerová T, Čarnická S, Ledvényiová V, Barlaka E, Galatou E, Chytilová A, Mandíková P, Nemčeková M, Adameová A, Kolář F, Lazou A (2013) Upregulation of genes involved in cardiac metabolism enhances myocardial resistance to ischemia/reperfusion in the rat heart. Physiol Res 62(Suppl 1):S151–S163

    Google Scholar 

  • Remor AP, de Matos FJ, Ghisoni K, da Silva TL, Eidt G, Búrigo M, de Bem AF, Silveira PC, de León A, Sanchez MC, Hohl A, Glaser V, Gonçalves CA, Quincozes-Santos A, Borba Rosa R, Latini A (2011) Differential effects of insulin on peripheral diabetes-related changes in mitochondrial bioenergetics: involvement of advanced glycosylated end products. Biochim Biophys Acta 1812(11):1460–1471. doi:10.1016/j.bbadis.2011.06.017

    Article  CAS  Google Scholar 

  • Rodrigues B, Figueroa DM, Fang J, Rosa KT, Llesuy S, De Angelis K, Irigoyen MC (2011) Short-term diabetes attenuates left ventricular dysfunction and mortality rates after myocardial infarction in rodents. Clinics (Sao Paulo) 66(8):1437–1442

    Article  Google Scholar 

  • Saini HK, Machackova J, Dhalla NS (2004) Role of reactive oxygen species in ischemic preconditioning of subcellular organelles in the heart. Antioxid Redox Signal 6(2):393–404

    Article  CAS  Google Scholar 

  • Schäfer C, Ladilov Y, Inserte J, Schäfer M, Haffner S, Garcia-Dorado D, Piper HM (2001) Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury. Cardiovasc Res 51(2):241–250

    Article  Google Scholar 

  • Schmidt MR, Smerup M, Konstantinov IE, Shimizu M, Li J, Cheung M, White PA, Kristiansen SB, Sorensen K, Dzavik V, Redington AN, Kharbanda RK (2007) Intermittent peripheral tissue ischemia during coronary ischemia reduces myocardial infarction through a KATP-dependent mechanism: first demonstration of remote ischemic perconditioning. Am J Physiol Heart Circ Physiol 292(4):H1883–H1890

    Article  CAS  Google Scholar 

  • Schultz JE, Qian YZ, Gross GJ, Kukreja RC (1997) The ischemia-selective KATP channel antagonist, 5-hydroxydecanoate, blocks ischemic preconditioning in the rat heart. J Mol Cell Cardiol 29(3):1055–1060

    Article  CAS  Google Scholar 

  • Sharma NK, Mahadevan N, Balakumar P (2013) Adenosine transport blockade restores attenuated cardioprotective effects of adenosine preconditioning in the isolated diabetic rat heart: potential crosstalk with opioid receptors. Cardiovasc Toxicol 13(1):22–32. doi:10.1007/s12012-012-9182-y

    Article  CAS  Google Scholar 

  • Silachev DN, Plotnikov EY, Pevzner IB, Zorova LD, Babenko VA, Zorov SD, Popkov VA, Jankauskas SS, Zinchenko VP, Sukhikh GT, Zorov DB (2014) The mitochondrion as a key regulator of ischaemic tolerance and injury. Heart Lung Circ 23(10):897–904. doi:10.1016/j.hlc.2014.05.022

    Article  Google Scholar 

  • Suleiman MS, Halestrap AP, Griffiths EJ (2001) Mitochondria: a target for myocardial protection. Pharmacol Ther 89(1):29–46

    Article  CAS  Google Scholar 

  • Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H (2007) Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol 28(3):1007–1017 2008 Feb

    Article  CAS  Google Scholar 

  • Taegtmeyer H (1994) Energy metabolism of the heart: from basic concepts to clinical applications. Curr Probl Cardiol 19(2):59–113

    Article  CAS  Google Scholar 

  • Tanaka Y, Konno N, Kako KJ (1992) Mitochondrial dysfunction observed in situ in cardiomyocytes of rats in experimental diabetes. Cardiovasc Res 26(4):409–414

    Article  CAS  Google Scholar 

  • Tani M, Neely JR (1989) Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+−Na+ and Na+−Ca2+ exchange. Circ Res 65(4):1045–1056

    Article  CAS  Google Scholar 

  • Tribulová N, Ravingerová T, Volkovová K, Ziegelhöffer A, Okruhlicová Ľ, Ziegelhöffer B, Styk J, Slezák J (1996) Resistance of diabetic rat hearts to ca overloadrelated injury. Histochemical and ultrastructural study. Diabetes Res Clin Pract 31:S113–S122

    Article  Google Scholar 

  • Tritto I, D'Andrea D, Eramo N, Scognamiglio A, De Simone C, Violante A, Esposito A, Chiariello M, Ambrosio G (1997) Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res 80(5):743–748

    Article  CAS  Google Scholar 

  • von Ruecker AA, Han-Jeon BG, Wild M, Bidlingmaier F (1989) Protein kinase C involvement in lipid peroxidation and cell membrane damage induced by oxygen-based radicals in hepatocytes. Biochem Biophys Res Commun 163(2):836–842

    Article  Google Scholar 

  • Vasdev SC, Biro GP, Narbaitz R, Kako KJ (1980) Membrane changes induced by early myocardial ischemia in the dog. Can J Biochem 58:1112–1129

    Article  CAS  Google Scholar 

  • Vejux A, Malvitte L, Lizard G (2008) Side effects of oxysterols: cytotoxicity, oxidation, inflammation, and phospholipidosis. Braz J Med Biol Res 41(7):545–556

    Article  CAS  Google Scholar 

  • Vinokur V, Berenshtein E, Bulvik B, Grinberg L, Eliashar R, Chevion M (2013) The bitter fate of the sweet heart: impairment of iron homeostasis in diabetic heart leads to failure in myocardial protection by preconditioning. PLoS One 8(5):e62948. doi:10.1371/journal.pone.0062948

    Article  CAS  Google Scholar 

  • Waczulíková I, Ziegelhöffer A, Országhová Z, Cársky J (2002) Fluidising effect of resorcylidene aminoguanidine on sarcolemmal membranes in streptozotocin-diabetic rats: blunted adaptation of diabetic myocardium to Ca2+ overload. J Physiol Pharmacol 53(4 Pt 2):727–739

    Google Scholar 

  • Waczulikova I, Habodaszova D, Cagalinec M, Ferko M, Ulicna O, Mateasik A, Sikurova L, Ziegelhöffer A (2007) Mitochondrial membrane fluidity, potential, and calcium transients in the myocardium from acute diabetic rats. Can J Physiol Pharmacol 85(3–4):372–381

    Article  CAS  Google Scholar 

  • Williamson JR, Chang K, Frangos M, Hasan KS, Ido Y, Kawamura T, Nyengaard JR, van den Enden M, Kilo C, Tilton RG (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42(6):801–813

    Article  CAS  Google Scholar 

  • Wykoff CC, Beasley NJ, Watson PH, Turner KJ, Pastorek J, Sibtain A, Wilson GD, Turley H, Talks KL, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res 60(24):7075–7083

    CAS  Google Scholar 

  • Xu G, Takashi E, Kudo M, Ishiwata T, Naito Z (2004) Contradictory effects of short- and long-term hyperglycemias on ischemic injury of myocardium via intracellular signaling pathway. Exp Mol Pathol 76(1):57–65

    Article  CAS  Google Scholar 

  • Yellon DM, Hausenloy DJ (2007) Myocardial reperfusion injury. N Engl J Med 357(11):1121–1135. doi:10.1056/NEJMra071667

    Article  CAS  Google Scholar 

  • Zhao ZQ, Corvera JS, Halkos ME, Kerendi F, Wang NP, Guyton RA, Vinten-Johansen J (2003) Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol Heart Circ Physiol. 285(2):H579-88. Erratum in: Am J Physiol Heart Circ Physiol (2004) 286(1):H477.

  • Zhu XH, Yuan HJ, Wu YN, Kang Y, Jiao JJ, Gao WZ, Liu YX, Lou JS, Xia Z (2011) Non-invasive limb ischemic pre-conditioning reduces oxidative stress and attenuates myocardium ischemia-reperfusion injury in diabetic rats. Free Radic Res 45(2):201–210. doi:10.3109/10715762.2010.522576

    Article  CAS  Google Scholar 

  • Zieghӧffer A (2005) Endogenous protective mechanisms in the heart triggered by acute streptozotocin - diabetes. In: Bachárová L, Kyselovič J, Slezák J (eds) Experimental hypertension and ischemic heart disease. VEDA, Bratislava, pp. 193–208

  • Ziegelhöffer A, Ravingerová T, Styk J, Tribulová N, Volkovová K, Šeboková J, Breier A (1996) Diabetic cardiomyopathy in rats: biochemical mechanisms of increased tolerance to calcium overload. Diabetes Res Clin Pract 31:S93–103

    Article  Google Scholar 

  • Ziegelhöffer A, Ravingerová T, Styk J, Šeboková J, Waczulíková I, Breier A, Džurba A, Volkovová K, Čársky J, Turecký L (1997) Mechanisms that may be involved in calcium tolerance of the diabetic heart. Mol Cell Biochem 176:91–98

    Article  Google Scholar 

  • Ziegelhöffer A, Styk J, Ravingerová T, Šeboková J, Volkovová K, Waczulíková I, Čársky J, Džurba A, Dočolomanský P (1999) Prevention of processes coupled with free radical formation prevents also the development of calcium-resistance in the diabetic heart. Life Sci 65(18–19):1999–2001

  • Ziegelhöffer A, Ravingerová T, Waczulíková I, Čársky J, Neckář J, Ziegelhöffer-Mihalovičová B, Styk J (2002) Energy transfer in acute diabetic rat hearts. Adaptation to increased energy demands due to augmented calcium transients. Ann N Y Acad Sci 967:463–468

    Article  Google Scholar 

  • Ziegelhöffer A, Waczulíková I, Ferko M, Kincelová D, Ziegelhöffer B, Ravingerová T, Cagalinec M, Schönburg M, Ziegelhoeffer T, Šikurová L, Uličná O, Mujkošová J (2009) Calcium signaling-mediated endogenous protection of cell energetics in the acutely diabetic myocardium. Can J Physiol Pharmacol 87(12):1083–1094

  • Ziegelhöffer A, Waczulíková I, Ferko M, Šikurová L, Mujkošová J, Ravingerová T (2012) Involvement of membrane fluidity in endogenous protective processes running on subcellular membrane systems of the rat heart. Physiol Res 61(2):S11–S21

    Google Scholar 

  • Ziegelhöffer-Mihalovičová B, Waczulíková I, Šikurová L, Styk J, Čársky J, Ziegelhöffer A (2003) Remodelling of the sarcolemma in diabetic rat hearts: the role of membrane fluidity. Mol Cell Biochem 249:175–182

    Article  Google Scholar 

  • Zieghöffer A (2005) Endogenous protective mechanisms in the heart triggered by acute streptozotocin - diabetes. In: Bachárová L, Kyselovič J, Slezák J (eds) Experimental hypertension and ischemic heart disease. VEDA, Bratislava, pp 193-208

  • Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ (2000) Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192:1001–1014

    Article  CAS  Google Scholar 

  • Zorov DB, Juhaszova M, Sollott JS (2014) Mitochondrial Reactive Oxygen Species (ROS) and ROS-Induced ROS Release. Physiol Rev 94(3):909–950. doi:10.1152/physrev.00026.2013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to our colleague Ing. Attila Ziegelhӧffer, DrSc., for his long-term supervising and mentorship, and Tanya Ravingerová, M.D., DrSc., for all the fruitful scientific discussions. Cooperation on this paper with PharmDr. Tereza Goliaš, PhD, is also highly appreciated.

The work was supported by Scientific Grant Agency of the Ministry of Education, Science Research and Sport of the Slovak Republic (VEGA) 2/0133/15, 2/0201/15, Slovak Research and Development Agency (APVV) 15-0119, 15-0607 and Structural funds and Cohesion Fund (ITMS) 26230120006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdaléna Jašová.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jašová, M., Kancirová, I., Waczulíková, I. et al. Mitochondria as a target of cardioprotection in models of preconditioning. J Bioenerg Biomembr 49, 357–368 (2017). https://doi.org/10.1007/s10863-017-9720-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-017-9720-1

Keywords

Navigation