Skip to main content
Log in

Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Arginine kinase (AK) (ATP: L-arginine phosphotransferase, E.C. 2.7.3.3) catalyzes the reversible transfer of ATP γ-phosphate group to L-arginine to synthetize phospho-arginine as a high-energy storage. Previous studies suggest additional roles for AK in cellular processes. Since AK is found only in invertebrates and it is homologous to creatine kinase from vertebrates, the objective of this work was to demonstrate nucleoside diphosphate kinase-like activity for shrimp AK. For this, AK from marine shrimp Litopenaeus vannamei (LvAK) was purified and its activity was assayed for phosphorylation of TDP using ATP as phosphate donor. Moreover, by using high-pressure liquid chromatography (HPLC) the phosphate transfer reaction was followed. Also, LvAK tryptophan fluorescence emission changes were detected by dTDP titration, suggesting that the hydrophobic environment of Trp 221, which is located in the top of the active site, is perturbed upon dTDP binding. The kinetic constants for both substrates Arg and dTDP were calculated by isothermal titration calorimetry (ITC). Besides, docking calculations suggested that dTDP could bind LvAK in the same cavity where ATP bind, and LvAK basic residues (Arg124, 126 and 309) stabilize the dTDP phosphate groups and the pyrimidine base interact with His284 and Ser122. These results suggest that LvAK bind and phosphorylate dTDP being ATP the phosphate donor, thus describing a novel alternate nucleoside diphosphate kinase-like activity for this enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abe H, Hirai S, Okada S (2007) Comp Biochem Physiol A Mol Integr Physiol 146:40–46

    Article  Google Scholar 

  • Adeyemi OS, Whiteley CG (2014) Biochim Biophys Acta 1840:701–706

    Article  CAS  Google Scholar 

  • Adeyemi OS, Sulaiman AF, Iniaghe OM (2014) J Biophys 2014:675905

    Article  CAS  Google Scholar 

  • Arvizu-Flores AA, Aispuro-Hernandez E, Garcia-Orozco KD, Varela-Romero A, Valenzuela-Soto E, Velazquez-Contreras EF, Rojo-Domínguez A, Yepiz-Plascencia G, Maley F, Sotelo-Mundo RR (2009) Comp Biochem Physiol Part C: Toxicol Pharmacol 150:406–413

    Google Scholar 

  • Blethen SL (1970) Methods Enzymol 17:330–335

    Article  Google Scholar 

  • Blethen SL (1972) Arch Biochem Biophys 149:244–251

    Article  CAS  Google Scholar 

  • Brown AE, Grossman SH (2004) Arch Insect Biochem Physiol 57:166–177

    Article  CAS  Google Scholar 

  • Deville-Bonne D, El Amri C, Meyer P, Chen Y, Agrofoglio LA, Janin J (2010) Antiviral Res 86:101–120

    Article  CAS  Google Scholar 

  • Ellington WR (2001) Annu Rev Physiol 63:289–325

    Article  CAS  Google Scholar 

  • Ellington WR, Hines AC (1991) Biol Bull 180:505–507

    Article  CAS  Google Scholar 

  • France RM, Sellers DS, Grossman SH (1997) Arch Biochem Biophys 345:73–78

    Article  CAS  Google Scholar 

  • Freire E, Mayorga OL, Straume M (1990) Anal Chem 62:950A–959A

    Article  CAS  Google Scholar 

  • Fujimoto N, Tanaka K, Suzuki T (2005) FEBS Lett 579:1688–1692

    Article  CAS  Google Scholar 

  • Garcia-Orozco KD, Aispuro-Hernandez E, Yepiz-Plascencia G, Calderon-De-La-Barca AM, Sotelo-Mundo RR (2007) Int Arch Allergy Immunol 144:23–28

    Article  CAS  Google Scholar 

  • Gonin P, Xu Y, Milon L, Dabernat S, Morr M, Kumar R, Lacombe ML, Janin J, Lascu I (1999) Biochemistry 38:7265–7272

    Article  CAS  Google Scholar 

  • Guevara-Hernandez E, Garcia-Orozco KD, Sotelo-Mundo RR (2012) Protein Pept Lett 19:1220–1224

    Article  CAS  Google Scholar 

  • Guo SY, Guo Z, Guo Q, Chen BY, Wang XC (2003) Protein Expr Purif 29:230–234

    Article  CAS  Google Scholar 

  • Guo Q, Zhao F, Guo SY, Wang X (2004) Biochimie 86:379–386

    Article  CAS  Google Scholar 

  • Janin J, Dumas C, Morera S, Xu Y, Meyer P, Chiadmi M, Cherfils J (2000) J Bioenerg Biomembr 32:215–225

    Article  CAS  Google Scholar 

  • Jeffery CJ (2003) Trends Genet 19:415–417

    Article  CAS  Google Scholar 

  • Jiang H, Li F, Xie Y, Huang B, Zhang J, Zhang J, Zhang C, Li S, Xiang J (2009) Proteomics 9:3353–3367

    Article  CAS  Google Scholar 

  • Jubrias SA, Esselman PC, Price LB, Cress ME, Conley KE (2001) J Appl Physiol 90:1663–1670

    Article  CAS  Google Scholar 

  • Krishnan P, Fu Q, Lam W, Liou JY, Dutschman G, Cheng YC (2002) J Biol Chem 277:5453–5459

    Article  CAS  Google Scholar 

  • Lascu L, Giartosio A, Ransac S, Erent M (2000) J Bioenerg Biomembr 32:227–236

    Article  CAS  Google Scholar 

  • Liu N, Wang JS, Wang WD, Pan JC (2011) Int J Biol Macromol 49:98–102

    Article  CAS  Google Scholar 

  • Lopez-Zavala AA, Sotelo-Mundo RR, Garcia-Orozco KD, Isac-Martinez F, Brieba LG, Rudino-Pinera E (2012) Acta Crystallogr Sect F: Struct Biol Cryst Commun 68:783–785

    Article  CAS  Google Scholar 

  • Lopez-Zavala AA, Garcia-Orozco KD, Carrasco-Miranda JS, Sugich-Miranda R, Velazquez-Contreras EF, Criscitiello MF, Brieba LG, Rudino-Pinera E, Sotelo-Mundo RR (2013) J Bioenerg Biomembr 45:511–518

    Article  CAS  Google Scholar 

  • Lu Q, Inouye M (1996) Proc Natl Acad Sci U S A 93:5720–5725

    Article  CAS  Google Scholar 

  • Ma FF, Liu QH, Guan GK, Li C, Huang J (2014) Gene 539:99–106

    Article  CAS  Google Scholar 

  • Mathews CK (2014) FASEB J 28:3832–3840

    Article  CAS  Google Scholar 

  • Mcnicholas S, Potterton E, Wilson KS, Noble ME (2011) Acta Crystallogr D Biol Crystallogr 67:386–394

    Article  CAS  Google Scholar 

  • Morin PE, Freire E (1991) Biochemistry 30:8494–8500

    Article  CAS  Google Scholar 

  • Nelson DL, Lehninger AL, Cox MM (2008) Lehninger principles of biochemistry, Macmillan

  • Quintero-Reyes IE, Garcia-Orozco KD, Sugich-Miranda R, Arvizu-Flores AA, Velazquez-Contreras EF, Castillo-Yañez FJ, Sotelo-Mundo RR (2012) J Bioenerg Biomembr 44:325–331

    Article  CAS  Google Scholar 

  • Rattanarojpong T, Wang HC, Lo CF, Flegel TW (2007) Proteomics 7:3809–3814

    Article  CAS  Google Scholar 

  • Rosenthal GA, Dahlman DL, Robinson GW (1977) J Biol Chem 252:3679–3683

    CAS  Google Scholar 

  • Ryder JM (1985) J Agric Food Chem 33:678–680

    Article  CAS  Google Scholar 

  • Schaertl S, Konrad M, Geeves MA (1998) J Biol Chem 273:5662–5669

    Article  CAS  Google Scholar 

  • Shi X, Wang L, Zhou Z, Yang C, Gao Y, Song L (2012) Dev Comp Immunol 37:270–278

    Article  CAS  Google Scholar 

  • Suzuki T, Kawasaki Y, Furukohri T (1997) Biochem J 328(Pt 1):301–306

    Article  CAS  Google Scholar 

  • Tanaka K, Ichinari S, Iwanami K, Yoshimatsu S, Suzuki T (2007) Insect Biochem Mol Biol 37:338–345

    Article  CAS  Google Scholar 

  • Varga A, Chaloin L, Sagi G, Sendula R, Graczer E, Liliom K, Zavodszky P, Lionne C, Vas M (2011) Mol Biosyst 7:1863–1873

    Article  CAS  Google Scholar 

  • Viant MR, Rosenblum ES, Tjeerdema RS (2001) J Chromatogr B Biomed Sci Appl 765:107–111

    Article  CAS  Google Scholar 

  • Vishnudas V, Vigoreaux JO (2006). Sustained High Power Performance. In Nature’s versatile engine: insect flight muscle inside and out (pp 188–196): Springer

  • Wallimann T, Dolder M, Schlattner U, Eder M, Hornemann T, O’gorman E, Ruck A, Brdiczka D (1998) Biofactors 8:229–234

    Article  CAS  Google Scholar 

  • Wang B, Li F, Dong B, Zhang X, Zhang C, Xiang J (2006) Mar Biotechnol 8:491–500

    Article  Google Scholar 

  • Wang JS, Zheng ZL, Lei J, Pan JC, Zou GL (2009) Comp Biochem Physiol B Biochem Mol Biol 153:268–274

    Article  Google Scholar 

  • Wang HR, Zhu WJ, Wang XY (2011) Int J Biol Macromol 49:985–991

    Article  CAS  Google Scholar 

  • Wennefors CK, Dobrikov MI, Xu Z, Li P, Shaw BR (2008) Bioorg Chem 36:169–177

    Article  CAS  Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD, Hochstrasser DF (1999) Methods Mol Biol 112:531–552

    CAS  Google Scholar 

  • Willemoes M, Kilstrup M (2005) Arch Biochem Biophys 444:195–199

    Article  CAS  Google Scholar 

  • Williams BA, Toone EJ (1993) J Org Chem 58:3507–3510

    Article  CAS  Google Scholar 

  • Wu XQ, Zhu WJ, Lu ZR, Xia Y, Yang JM, Zou F, Wang XY (2009) Int J Biol Macromol 44:149–155

    Article  CAS  Google Scholar 

  • Wu X, Ye S, Guo S, Yan W, Bartlam M, Rao Z (2010) FASEB J 24:242–252

    Article  Google Scholar 

  • Yao CL, Ji PF, Kong P, Wang ZY, Xiang JH (2009) Fish Shellfish Immunol 26:553–558

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Jose Max Hernández-Flores was supported by a student fellowship from CONACyT (Mexico’s National Science and Research Council). Alonso A. Lopez-Zavala was supported by CONACyT under the grant “Fondo Consolidacion Institucional (I0007-2015-01, #250973)”. Also, authors acknowledge financial support from CONACyT grant CB-2009-131859. We acknowledge technical bibliographical support to Mr. Gerardo Reyna and technical support from Emmanuel Aispuro M.Sc. and Dr. Refugio Pérez from Univ. Sonora. Authors also thank Dr. Aldo Arvizu-Flores for help with the docking.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karina D. Garcia-Orozco.

Electronic supplementary material

Molecular weight and quaternary structure determination of LvAK

Quaternary structure of shrimp LvAK was determined by gel filtration chromatography using a Superdex 200 column (GE Healthcare, USA) with an approximate column volume of 23 mL. The column was previously equilibrated with three column volumes of running buffer (20 mM sodium phosphate pH 7.5 and 200 mM NaCl) and then calibrated with molecular weight standards: albumin (66 kDa), ovalbumin (44 kDa) and inhibitor soybean trypsin (21.5 kDa). LvAK was dialyzed with running buffer and 250 μl were applied to the column. Fractions were collected and enzymatic activity was measured. The molecular weight was calculated by linear regression using elution time of standards as references. The peaks containing enzymatic activity were analyzed by SDS-PAGE as described above.

Determination of the native molecular weight of native shrimp AK

In order to determine the shrimp AK (LvAK) quaternary structure, the purified enzyme was separated by size-exclusion chromatography using a Superdex 200 column. Linear regression analysis of the data indicates that LvAK has a native molecular weight of 38 kDa (Fig. 1, panel A). This value agrees with the calculated value obtained from the amino acid sequence (≈40.16 kDa) using the ProtParam algorithm (Wilkins et al. 1999). Also, the fractions corresponding to the monomer have a molecular mass of 40 kDa by SDS-PAGE (Fig. 1, panel B). The slight difference in values may be due to the shape of the protein but size-exclusion chromatography demonstrate that shrimp AK is a monomeric enzyme. Other monomeric AKs are those of mollusks and arthropods such as the oyster Crassostrea virginica, the worm Manduca sexta and the cockroach Periplaneta americana, whose molecular weights are about 40 kDa (Brown and Grossman 2004; Fujimoto et al. 2005; Rosenthal et al. 1977). Dimeric invertebrate AKs are less common, such as the sea cucumber Stichopus japonicus and sea anemone Anthopleura japonicus, which are dimeric and have an approximate weight of 80 kDa (Guo et al. 2003; Suzuki et al. 1997).

Figure S1

Gel filtration chromatography using a Superdex 200 column. Panel A) The molecular weight standards were albumin (66 kDa), ovalbumin (44 kDa) and soybean trypsin (21.5 kDa) and are shown as dotted lines?. LvAK is shown as a solid line. Inset shows the calibration graph. Panel B) SDS-PAGE of fractions from gel filtration. LvAK has a molecular weight of 40 kDa. The lane indicated by an asterisk (*) correspond to the fraction 16, which is the peak of the chromatography. (GIF 452 kb)

(GIF 6 kb)

High Resolution Image (TIFF 190 kb)

High Resolution Image (TIF 90 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopez-Zavala, A.A., Sotelo-Mundo, R.R., Hernandez-Flores, J.M. et al. Arginine kinase shows nucleoside diphosphate kinase-like activity toward deoxythymidine diphosphate. J Bioenerg Biomembr 48, 301–308 (2016). https://doi.org/10.1007/s10863-016-9660-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-016-9660-1

Keywords

Navigation