Skip to main content
Log in

Antineoplastic copper coordinated complexes (Casiopeinas) uncouple oxidative phosphorylation and induce mitochondrial permeability transition in cardiac mitochondria and cardiomyocytes

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

Copper-based drugs, Casiopeinas (Cas), exhibit antiproliferative and antineoplastic activities in vitro and in vivo, respectively. Unfortunately, the clinical use of these novel chemotherapeutics could be limited by the development of dose-dependent cardiotoxicity. In addition, the molecular mechanisms underlying Cas cardiotoxicity and anticancer activity are not completely understood. Here, we explore the potential impact of Cas on the cardiac mitochondria energetics as the molecular mechanisms underlying Cas-induced cardiotoxicity. To explore the properties on mitochondrial metabolism, we determined Cas effects on respiration, membrane potential, membrane permeability, and redox state in isolated cardiac mitochondria. The effect of Cas on the mitochondrial membrane potential (Δψm) was also evaluated in isolated cardiomyocytes by confocal microscopy and flow cytometry. Cas IIIEa, IIgly, and IIIia predominately inhibited maximal NADH- and succinate-linked mitochondrial respiration, increased the state-4 respiration rate and reduced membrane potential, suggesting that Cas also act as mitochondrial uncouplers. Interestingly, cyclosporine A inhibited Cas-induced mitochondrial depolarization, suggesting the involvement of mitochondrial permeability transition pore (mPTP). Similarly to isolated mitochondria, in isolated cardiomyocytes, Cas treatment decreased the Δψm and cyclosporine A treatment prevented mitochondrial depolarization. The production of H2O2 increased in Cas-treated mitochondria, which might also increase the oxidation of mitochondrial proteins such as adenine nucleotide translocase. In accordance, an antioxidant scavenger (Tiron) significantly diminished Cas IIIia mitochondrial depolarization. Cas induces a prominent loss of membrane potential, associated with alterations in redox state, which increases mPTP opening, potentially due to thiol-dependent modifications of the pore, suggesting that direct or indirect inhibition of mPTP opening might reduce Cas-induced cardiotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alemón-Medina R, Muñoz-Sánchez JL, Ruiz-Azuara L, Gracia-Mora I (2008) Casiopeína IIgly induced cytotoxicity to HeLa cells depletes the levels of reduced glutathione and is prevented by dimethyl sulfoxide. Toxicol in Vitro 22:710–715

    Article  Google Scholar 

  • Alemón-Medina R, Bravo-Gómez ME, Gracia-Mora MI, Ruiz-Azuara L (2011) Comparison between the antiproliferative effect and intracellular glutathione depletion induced by Casiopeína IIgly and cisplatin in murine melanoma B16 cells. Toxicol in Vitro 25:868–873

    Article  Google Scholar 

  • Ally A, Park G (1992) Rapid determination of creatine, phosphocreatine, purine bases and nucleotides (ATP, ADP, AMP, GTP, GDP) in heart biopsies by gradient ion-pair reversed-phase liquid chromatography. Chromatography 575:19–27

    Article  CAS  Google Scholar 

  • Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, Ovize M (2005) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 38:367–374

    Article  CAS  Google Scholar 

  • Arteaga D, Odor A, López RM, Contreras G, Pichardo J, García E, Aranda A, Chávez E (1992) Impairment by cyclosporin a of reperfusion-induced arrhythmias. Life Sci 51:1127–1134

    Article  CAS  Google Scholar 

  • Becco L, Rodríguez A, Bravo ME, Prieto MJ, Ruiz-Azuara L, Garat B, Moreno V, Gambino D (2012) New achievements on biological aspects of copper complexes Casiopeínas(R): interaction with DNA and proteins and anti-Trypanosoma cruzi activity. J Inorg Biochem 109:49–56

    Article  CAS  Google Scholar 

  • Bravo-Gómez ME, García-Ramos JC, Gracia-Mora I, Ruiz-Azuara L (2009) Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N–N)(acetylacetonato)]NO3 and [Cu(N–N)(glycinato)]NO3 complexes, (Casiopeínas®). J Inorg Biochem 103:299–309

    Article  Google Scholar 

  • Bravo-Gómez ME, Dávila-Manzanilla S, Flood-Garibay J, Muciño-Hernández MA, Mendoza A, García-Ramos JC, Moreno-Esparza R, Ruiz-Azuara L (2012) Secondary ligand effects on the cytotoxicity of several Casiopeína’s group II compounds. J Mex Chem Soc 56:85–92

    Google Scholar 

  • Bulteau AL, Lundberg KC, Ikeda-Saito M, Isaya G, Szweda LI (2005) Reversible redox-dependent modulation of mitochondrial aconitase and proteolytic activity during in vivo cardiac ischemia/reperfusion. Proc Natl Acad Sci 102:5987–5991

    Article  CAS  Google Scholar 

  • Carvallo-Chaigneau F, Trejo-Solís C, Gómez-Ruiz C, Rodríguez-Aguilera E, Macías-Rosales L, Cortés-Barberena E, Cedillo-Peláez C, Gracia-Mora I, Ruiz-Azuara L, Madrid-Marina V, Constantino-Casas F (2007) Casiopeína III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo. Biometals 21:17–28

    Article  Google Scholar 

  • Chirino YI, Pedraza-Chaverri J (2009) Role of oxidative and nitrosative stress in cisplatin-induced nephrotoxicity. Exp Toxicol Pathol 61:223–242

    Article  CAS  Google Scholar 

  • Chuang SM, Lee YH, Liang RY, Roam GD, Zeng ZM, Tu HF, Wang SK, Wang PJ (2013) Extensive evaluations of the cytotoxic effects of gold nanoparticles. Chueh Biochim Biophys Acta 1830:4960–4973

    Article  CAS  Google Scholar 

  • Colombo A, Cipolla C, Beggiato M, Cardinale D (2013) Cardiac toxicity of anticancer agents. Curr Cardiol Rep 15:362

    Article  Google Scholar 

  • Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751

    Article  CAS  Google Scholar 

  • Di Lisa F, Menabò R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276:2571–2575

    Article  Google Scholar 

  • Dolinsky VW, Rogan KJ, Sung MM, Zordoky BN, Haykowsky MJ, Young ME, Jones LW, Dyck JR (2013) Both aerobic exercise and resveratrol supplementation attenuate doxorubicin-induced cardiac injury in mice. Am J Physiol Endocrinol Metab 305:E243–E253

    Article  CAS  Google Scholar 

  • El-Boghdady NA (2013) Increased cardiac andothelin-1 and nitric oxide in adriamycin-induced acute cardiotoxicity: protective effect of ginkgo biloba extrac. Indian J Biochem Biophys 50:202–209

    CAS  Google Scholar 

  • Förster K, Richter H, Alexeyev MF, Rosskopf D, Felix SB, Krieg T (2010) Inhibition of glycogen synthase kinase 3beta prevents peroxide-induced collapse of mitochondrial membrane potential in rat ventricular myocytes. Clin Exp Pharmacol Physiol 37:684–688

    Article  Google Scholar 

  • García N, Martínez-Abundis E, Pavón N, Correa F, Chávez E (2007) Copper induces permeability transition through its interaction with the adenine nucleotide translocase. Cell Biol Int 31:893–899

    Article  Google Scholar 

  • García N, Pavón N, Chávez E (2008) The effect of N-ethylmaleimide on permeability transition as induced by carboxyatractyloside, agaric acid, and oleate. Cell Biochem Biophys 51:81–87

    Article  Google Scholar 

  • García-Rivas GJ, Torre-Amione G (2009) Abnormal mitochondrial function during ischemia reperfusion provides targets for pharmacological therapy. Methodist Debakey Cardiovasc J5:2–7

    Article  Google Scholar 

  • García-Rivas GJ, Carvajal K, Correa F, Zazueta C (2006) Ru360, a specific mitochondrial calcium uptake inhibitor, improves cardiac post-ischaemic functional recovery in rats in vivo. Br J Pharmacol 149:829–837

    Article  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166

    Article  CAS  Google Scholar 

  • Heger Z, Cernei N, Kudr J, Gumulec J, Blazkova I, Zitka O, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) A novel insight into the cardiotoxicity of antineoplastic drug doxorubicin. Int J Mol Sci 14:21629–21646

    Article  Google Scholar 

  • Hernández-Esquivel L, Marín-Hernández A, Pavón N, Carvajal K, Moreno-Sánchez R (2006) Toxicol Appl Pharmacol 212:79–88

    Article  Google Scholar 

  • Kachadourian R, Brechbuhl H, Ruiz-Azuara L, Gracia-Mora I, Day BJ (2010) Casiopeína IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 268:176–183

    Article  CAS  Google Scholar 

  • Köpf-Maier P (1994) Complexes of metals other than platinum as antitumour agents. Eur J Clin Pharmacol 47:1–16

    Article  Google Scholar 

  • Leal-García M, García-Ortuño L, Ruiz-Azuara L, Gracia-Mora I, Luna-Delvillar J, Sumano H (2007) Assessment of acute respiratory and cardiovascular toxicity of casiopeínas in anaesthetized dogs. Basic Clin Pharmacol Toxicol 101:151–158

    Article  Google Scholar 

  • Marín-Hernández A, Gracia-Mora I, Ruiz-Ramírez L, Moreno-Sánchez R (2003) Toxic effects of copper-based antineoplastic drugs (Casiopeínas®) on mitochondrial functions. Biochem Pharmacol 65:1979–1989

    Article  Google Scholar 

  • Marín-Hernández A, Gallardo-Pérez JC, López-Ramírez SY, García-García JD, Rodríguez-Zavala JS, Ruiz-Ramírez L, Gracia-Mora I, Zentella-Dehesa A, Sosa-Garrocho M, Macías-Silva M, Moreno-Sánchez R, Rodríguez-Enríquez S (2012) Casiopeína II-gly and bromo-pyruvate inhibition of tumor hexokinase, glycolysis, and oxidative phosphorylation. Arch Toxicol 86:753–766

    Article  Google Scholar 

  • Mejia C, Ruiz-Azuara L (2008) Casiopeinas IIgly and IIIia induce apoptosis in medulloblastoma cells. Pathol Oncol Res 14:467–472

    Article  Google Scholar 

  • Noori S, Nasir K, Mahboob T (2009) Effects of cocoa powder on oxidant/ antioxidant status in liver, heart and kidney tissues of rats. J Anim Plant Sci 19:174–178

    Google Scholar 

  • Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL (2012) Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 52:1213–1225

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  Google Scholar 

  • Oliveira PJ, Wallace KB (2006) Depletion of adenine nucleotide translocator protein in heart mitochondria from doxorubicin-treated rats-relevance for mitochondrial dysfunction. Toxicology 220:160–168

    Article  CAS  Google Scholar 

  • Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, Macia C, Raczka F, Sportouch C, Gahide G, Finet G, André-Fouët X, Revel D, Kirkorian G, Monassier JP, Derumeaux G, Ovize M (2008) Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med 359:473–481

    Article  CAS  Google Scholar 

  • Rodríguez-Enríquez S, Vital-González PA, Flores-Rodríguez FL, Marín-Hernández A, Ruiz-Azuara L, Moreno-Sánchez R (2006) Control of cellular proliferation by modulation of oxidative phosphorylation in human and rodent fast-growing tumor cells. Toxicol Appl Pharmacol 215:208–217

    Article  Google Scholar 

  • Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, Schwartz PD, Surkin LA, Setaro J, Wackers FJT, Zaret BL (1987) Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Am J Med 82:1109–1118

    Article  CAS  Google Scholar 

  • Serment-Guerrero J, Cano-Sanchez P, Reyes-Perez E, Velazquez-Garcia F, Bravo-Gomez ME, Ruiz-Azuara L (2011) Genotoxicity of the copper antineoplastic coordination complexes casiopeínas. Toxicol in Vitro 25:1376–1384

    Article  CAS  Google Scholar 

  • Silva-Platas C, García N, Fernández-Sada E, Dávila D, Hernández-Brenes C, Rodríguez D, García-Rivas G (2012) Cardiotoxicity of acetogenins from Persea americana occurs through the mitochondrial permeability transition pore and caspase-dependent apoptosis pathways. J Bioenerg Biomembr 44:461–471

    Article  CAS  Google Scholar 

  • Trejo-Solís C, Palencia G, Zúñiga S, Rodríguez-Ropon A, Osorio-Rico L, Luvia ST, Gracia-Mora I, Marquez-Rosado L, Sánchez A, Moreno-García ME, Cruz A, Bravo-Gómez ME, Ruiz-Ramírez L, Rodríguez-Enriquez S, Sotelo J (2005) Cas IIgly induces apoptosis in glioma C6 cells in vitro and in vivo through caspase-dependent and caspase-independent mechanisms. Neoplasia 7:563–574

    Article  Google Scholar 

  • Trejo-Solís C, Jimenez-Farfan D, Rodriguez-Enriquez S, Fernandez-Valverde F, Cruz-Salgado A, Ruiz-Azuara L, Sotelo J (2012) Copper compound induces autophagy and apoptosis of glioma cells by reactive oxygen species and JNK activation. BMC Cancer 12:156

    Article  Google Scholar 

  • Valencia-Cruz AI, Uribe-Figueroa LI, Galindo-Murillo R, Baca-López K, Gutiérrez AG, Vázquez-Aguirre A, Ruiz-Azuara L, Hernández-Lemus E, Mejía C (2013) Whole genome gene expression analysis reveals Casiopeína-induced apoptosis pathways. PLoS ONE 8:e54664 (18 p)

    Article  CAS  Google Scholar 

  • Vértiz G, García-Ortuño LE, Bernal JP, Bravo-Gómez ME, Lounejeva E, Huerta A, Ruiz-Azuara L (2014) Pharmacokinetics and hematotoxicity of a novel copper-based anticancer agent: Casiopeína III-Ea, after a single intravenous dose in rats. Fundam Clin Pharmacol 28:78–87

    Article  Google Scholar 

  • Ward MW (2009) Quantitative analysis of membrane potentials. In: Papkovsky DB (ed) Live cell imaging: methods and protocols, methods in molecular biology, vol 591., pp 335–351. doi:10.1007/978-1-60761-404-3_20, Print ISBN: 978-1-60761-403-6

    Chapter  Google Scholar 

  • Xu J, Hao Z, Gou X, Tian W, Jin Y, Cui S, Guo J, Sun Y, Wang Y, Xu Z (2013) Imaging of reactive oxygen species burst from mitochondria using laser scanning confocal microscopy. Microsc Res Tech 76:612–617

    Article  CAS  Google Scholar 

  • Zazueta C, Reyes-Vivas H, Zafra G, Sánchez CA, Vera G, Chávez E (1998) Mitochondrial permeability transition as induced by cross-linking of the adenine nucleotide translocase. Int J Biochem Cell Biol 30:517–527

    Article  CAS  Google Scholar 

  • Zhou S, Palmeira CM, Wallace KB (2001) Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicol Lett 121:151–157

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank, Tecnológico de Monterrey as well as CONACYT for the Founding Sources gave: this work was partially supported by Endowed Chair in Cardiology- Tec de Monterrey 0020CAT131 as well as CONACYT-México grant 151136 (G. García-Rivas). Casiopeinas synthesis was supported by CONACYT-México grant 179119 8 (L.Ruíz-Azuara). We acknowledge Valeria Oropeza for the figures designs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo García-Rivas.

Additional information

Christian Silva-Platas, Carlos Enrique Guerrero-Beltrán and Mariana Carrancá contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(DOCX 213 kb)

Supplementary Fig. 2

(DOCX 253 kb)

Supplementary Fig. 3

(DOCX 151 kb)

Supplementary Fig. 4

(DOCX 333 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva-Platas, C., Guerrero-Beltrán, C.E., Carrancá, M. et al. Antineoplastic copper coordinated complexes (Casiopeinas) uncouple oxidative phosphorylation and induce mitochondrial permeability transition in cardiac mitochondria and cardiomyocytes. J Bioenerg Biomembr 48, 43–54 (2016). https://doi.org/10.1007/s10863-015-9640-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9640-x

Keywords

Navigation