Skip to main content
Log in

Complexes of metals other than platinum as antitumour agents

  • Special Article
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Abstract

The earliest reports on the therapeutic use of metals or metal-containing compounds in cancer and leukemia date from the sixteenth and nineteenth centuries. They were forgotten until the 1960s, when the antitumour activity of the inorganic complex cis-diammine-dichloroplatinum(II) (cisplatin) was discovered. This led to the development of other types of non-organic cytostatic drugs.

Cisplatin has developed into one of the most frequently used and most effective cytostatic drugs for the treatment of solid carcinomas. Numerous other metal compounds containing platinum, other platinum metals, and even non-platinum metals were then shown to be effective against tumours in man and experimental tumours in animals. These compounds comprise main-group metallic compounds of gallium, germanium, tin, and bismuth, early-transition metal complexes of titanium, vanadium, niobium, molybdenum, and rhenium, and late-transition metal complexes of ruthenium, rhodium, iridium, platinum, copper, and gold.

Several platinum complexes and four non-platinum-metal antitumour agents have so far entered early clinical trials. Gallium trinitrate and spirogermanium have already passed phase II clinical studies and have shown limited cytostatic activity against certain human carcinomas and lymphomas. The two early-transition metal complexes budotitane and titanocene dichloride have just reached the end of phase I clinical trials and have been found to have an unusual pattern of organ toxicity in man. Titanocene dichloride will soon enter phase II clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson RH, Canellos GP, Sieber SM (1975) Studies on the antitumor activity of gallium nitrate (NSC-15 200) and other group IIIa metal salts. Cancer Chemother Rep 59 (Part 1): 599–610

    Google Scholar 

  • Ajani JA, Legha SL, Burgess MA, Body GP (1982) Phase I study of spirogermanium given for five consecutive days per week. Proc Am Soc Clin Oncol 1: 16

    Google Scholar 

  • Anghileri LJ, Thouvenot P, Robert J (1982) On the antitumor activity of gallium. Arch Geschwulstforsch 52: 479–480

    Google Scholar 

  • Barbieri R, Ruisi G, Atassi G (1991) The antitumor activity and structure of bis(adeninato-N9) diphenyltin(IV). J Inorg Biochem 41: 25–30

    Google Scholar 

  • Bear JL, Gray HB, Rainen L, Chang IM, Howard R, Serio G, Kimball AP (1975) Interaction of rhodium(II) carboxylates with molecules of biologic importance. Cancer Chemother Rep 59 (Part 1): 611–620

    Google Scholar 

  • Beauchamp AL, Cozak D, Mardhy A (1984) Synthesis and crystal structure of chlorobis(η5-cyclopentadienyl)purinato titanium(IV), a model compound for the interaction of the antitumor titanocene dichloride molecule with DNA bases. Inorg Chim Acta 92: 191–197

    Google Scholar 

  • Bell WB (1929) The present position of lead therapy in malignant disease. Br Med J 431–437

  • Berdel WE, Schmoll HJ, Scheulen ME, Korfel A, Knoche MF, Harstrick A, Bach F, Baumgart J, Saß G (1994) Phase I clinical trial of titanocene dichloride in adults with advanced solid tumors. J Cancer Res Clin Oncol 120 [Suppl]: R172

  • Berggren MM, Burns LA, Abraham RT, Powis G (1993) Inhibition of protein tyrosine phosphatase by the antitumor agent gallium nitrate. Cancer Res 53: 1862–1866

    Google Scholar 

  • Berners-Price SJ, Girard GR, Hill DT (1990) The cytotoxicity and antitumor activity of some tetrahedral, chelated bis(diphosphine)gold(I) complexes. J Med Chem 33: 1386–1392

    Google Scholar 

  • Berners-Price SJ, Mirabelli CK, Johnson RK, Mattern MR, McCabe FL, Faucette LF, Sung CM, Mong SM, Sadler PI, Crooke ST (1986) In vivo antitumor activity and in vitro cytotoxic properties of bis[1,2-bis(diphenylphosphino)ethane]gold(I) chloride. Cancer Res 46: 5486–5493

    Google Scholar 

  • Berners-Price SJ, Sadler PJ (1988) Phosphines and metal phosphine complexes: relationship of chemistry to anticancer and other biological activity. Struct Bond 70: 27–102

    Google Scholar 

  • Bischoff H, Berger MR, Keppler BK, Schmähl D (1987) Efficacy of β-diketonato complexes of titanium, zirconium, and hafnium against chemically induced autochthonous colonic tumors in rats. J Cancer Res Clin Oncol 113: 446–450

    Google Scholar 

  • Brenner DE, Jones HW, Rosenshein NB, Forastiere A, Dillon M, Grumbine F, Tipping S, Burnett L, Greco FA, Wiernik PH (1983) Phase II evaluation of spirogermanium in advanced ovarian carcinoma. Cancer Treat Rep 67: 193–194

    Google Scholar 

  • Brenner DE, Rosenshein NB, Dillon M, Jones HW, Forastiere A, Tipping S, Burnett LS, Greco FA, Wiernik PH (1985) Phase II study of spirogermanium in patients with advanced carcinoma of the cervix. Cancer Treat Rep 69: 457–458

    Google Scholar 

  • Brichard SM, Lederer J, Henquin JC (1991) The insulin-like properties of vanadium: a curiosity or a perspective for the treatment of diabetes? Diabete Metab 17: 435–440

    Google Scholar 

  • Budman DR, Schulman P, Vinciguerra V, Degnan TJ (1982) Phase I trial of spirogermanium given by infusion in a multiple-dose schedule. Cancer Treat Rep 66: 173–175

    Google Scholar 

  • Calabresi P, Parks RE (1975) Alkylating agents, antimetabolites, hormones, and other antiproliferative agents. In: Goodman LS, Gilman A (eds) The pharmacological basis of therapeutics, 5th edn. MacMillan, New York, pp 1254–1299

    Google Scholar 

  • Canetta R, Bragman K, Smaldone L, Rozencweig M (1988) Carboplatin: current status and future prospects. Cancer Treat Rev 15 [Suppl B]: 17–32

    Google Scholar 

  • Carpentier Y, Liautaud-Roger F, Collery P, Loirette M, Desoize B, Coninx P (1990) Effect of gallium on the cell cycle of tumor cells in vitro. In: Collery P, Poirier LA, Manfait M, Etienne JC (eds) Metal ions in biology and medicine. Libbey, Paris, pp 406–408

    Google Scholar 

  • Caruso F, Bol-Schoenmakers M, Penninks AH (1993) Crystal and molecular structure and in vitro antiproliferative and antitumor activity of two organotin(IV) carbohydrate compounds. J Med Chem 36: 1168–1174

    Google Scholar 

  • Casper ES, Stanton GF, Sordillo PP, Parente R, Michaelson RA, Vinceguerra V (1985) Phase II trial of gallium nitrate in patients with advanced malignant melanoma. Cancer Treat Rep 69: 1019–1020

    Google Scholar 

  • Christian MC (1992) The current status of new platinum analogs. Sem Oncol 19: 720–733

    Google Scholar 

  • Clarke MJ (1980) The potential of ruthenium in anticancer pharmaceuticals. In: Martell EA (ed) Inorganic chemistry in biology and medicine. American Chemical Society, Washington, pp 157–178

    Google Scholar 

  • Clarke MJ (1989) Ruthenium chemistry pertaining to the design of anticancer agents. Progr Clin Biochem Med 10: 25–39

    Google Scholar 

  • Collery P, Morel M, Desoize B, Millart H, Perdu D, Prevost A, Vallerand H, Pechery C, Choisy H, Etienne JC, Dubois De Montreynaud JM (1991) Combination chemotherapy with cisplatin, etoposide and gallium chloride for lung cancer: individual adaptation of doses. Anticancer Res 11: 1529–1532

    Google Scholar 

  • Collery P, Morel M, Millart H, Desoize B, Cossart C, Perdu D, Vallerand H, Bouana J C, Pechery C, Etienne JC, Choisy H, Dubois De Montreynaud JM (1990) Oral administration of gallium in conjunction with platinum in lung cancer treatment. In: Collery P, Poirier LA, Manfait M, Etienne JC (eds) Metal ions in biology and medicine. Libbey, Paris, pp 437–442

    Google Scholar 

  • Cozak D, Mardhy A, Olivier MJ, Beauchamp AL (1986) N7/O6 chelation in a complex with an analogue of guanine. Preparation, spectroscopic study, and crystal structure of bis(η5-cyclopentadienyl)(theophyllinato)titanium(III). Inorg Chem 25: 2600–2606

    Google Scholar 

  • Craciunescu G, Scarcia V, Furlani A, Iglesias EP, Ghirvu C, Papaioannou A (1989) Synthesis and biological evaluation of new Rh(I) complexes with sulfonamide derivatives. Anticancer Res 9: 781–786

    Google Scholar 

  • Crawford ED, Saiers JH, Baker LH, Costanzi JH, Bukowski RM (1991) Gallium nitrate in advanced bladder carcinoma: a Southwest Oncology Group study. Urology 38: 355–357

    Google Scholar 

  • Crowe AJ (1987) The chemotherapeutic properties of tin compounds. Drugs Future 12: 255–275

    Google Scholar 

  • Crowe AJ, Smith PJ, Atassi G (1980) Investigations into the antitumour activity of organotin compounds. I. Diorganotin dihalide and di-pseudohalide complexes. Chem Biol Interact 32: 171–178

    Google Scholar 

  • Crowe AJ, Smith PJ, Atassi G (1984) Investigations into the antitumour activity of organotin compounds. 2. Diorganotin dihalide and dipseudohalide complexes. Inorg Chim Acta 93: 179–184

    Google Scholar 

  • Decker DA, Costanzi JJ, McCracken JD, Baker LH (1984) Evaluation of gallium nitrate in metastatic or locally recurrent squamous cell carcinoma of the head and neck: a Southwest Oncology Group study. Cancer Treat Rep 68: 1047–1048

    Google Scholar 

  • DeVita VT, Hellman S, Rosenberg SA (eds) (1985) Cancer, principles and practice of oncology. Lippincott, Philadelphia

    Google Scholar 

  • Dexeus FH, Logothetis C, Samuels ML, Hossan B (1986) Phase II study of spirogermanium in metastatic prostate cancer. Cancer Treat Rep 70: 1129–1130

    Google Scholar 

  • Dhingra HM, Umsawasdi T, Chiuten DF, Murphy WK, Holoye PY, Spitzer G, Valdivieso M (1986) Phase II study of spirogermanium in advanced (extensive) non-small cell lung cancer. Cancer Treat Rep 70: 673–674

    Google Scholar 

  • Ehrlich P (1910) Über die Behandlung der Syphilis mit dem Ehrlichschen Präparat 606. Berl Klin Wochenschr 43: 1996–1999

    Google Scholar 

  • Eisenhauer E, Kerr I, Bodurtha A, Iscoe N, McCulloch P, Pritchard K, Quirt I (1985) A phase II study of spirogermanium in patients with metastatic malignant melanoma. Invest New Drugs 3: 303–305

    Google Scholar 

  • Elo HO, Lumme PO (1985) Antitumor activity of trans-bis(salicylaldoximato)copper(II): a novel antiproliferative metal complex. Cancer Treat Rep 69: 1021–1022

    Google Scholar 

  • Elo H, Lumme P (1987) Trans-bis(salicylaldoximato)copper(II) and its derivatives as antiproliferative and antineoplastic agents: a review. Inorg Chim Acta 136:149–153

    Google Scholar 

  • Espana P, Kaplan R, Robichaud K, Gustafson P, Wiernik P, Smith F, Woolley P, Schein P (1982) Phase II study of spirogermanium in lymphoma patients. Proc Am Soc Clin Oncol 1: C-647

  • Falkson G, Falkson HC (1983) Phase II trial of spirogermanium for treatment of advanced breast cancer. Cancer Treat Rep 67: 189–190

    Google Scholar 

  • Fantus IG, Kadota S, Deragon G, Foster B, Posner BI (1989) Pervanadate [peroxide(s) of vanadate] mimics insulin action in rat adipocytes via activation of the insulin receptor tyrosine kinase. Biochem 28: 8864–8871

    Google Scholar 

  • Foster BJ, Clagett-Carr K, Hoth D, Leyland-Jones B (1986) Gallium nitrate: the second metal with clinical activity. Cancer Treat Rep 70: 1311–1319

    Google Scholar 

  • Gagliardi R, Bassan F, Cocchietto M, Mestroni G, Alessio E, Pacor S, Sava G (1992) Effects of [trans-RuCl4(DMSO)Im]Na on MCa mammary carcinoma: histological analysis. Proc IVth Int Conf Anticancer Res, Rethymnon, Greece, pp 1886–1887

  • Garzon FT, Berger MR, Keppler BK, Schmähl D (1987) Comparative antitumor activity of ruthenium derivatives with 5′-deoxy-5-fluorouridine in chemically induced colorectal tumors in SD rats. Cancer Chemother Pharmacol 19: 347–349

    Google Scholar 

  • Gielen M, Jurkschat K, Atassi G (1984) Bis(halophenylstannyl)-methanes: new organotin compounds exhibiting antitumour activity. Bull Soc Chim Belg 93: 153–155

    Google Scholar 

  • Gielen M, Willem R (1989) Synthesis, characterization and antitumor activity of a series of diorganotin(IV) derivatives of bis(carboxymethyl)amines. J Organomet Chem 365: 91–101

    Google Scholar 

  • Gilman A (1963) The initial clinical trial of nitrogen mustard. Am J Surg 105: 574–578

    Google Scholar 

  • Giraldi T, Sava G, Bertoli G, Mestroni G, Zassinovich G (1977) Antitumor action of two rhodium and ruthenium complexes in comparison with cis-dichlorodiammineplatinum(II). Cancer Res 37: 2662–2666

    Google Scholar 

  • Giraldi T, Sava G, Mestroni G, Zassinovich G, Stolfa D (1978) Antitumor action of rhodium(I) and iridium(I) complexes. Chem Biol Interact 22: 231–238

    Google Scholar 

  • Giraldi T, Zassinovich G, Mestroni G (1974) Antitumor action of planar, organometallic rhodium(I) complexes. Chem Biol Interact 9: 389–394

    Google Scholar 

  • Goodman LS, Wintrobe MM, Dameshek W, Goodman MJ, Gilman A, McLennan M (1946) Nitrogen mustard therapy: use of methylbis(β-chlorethyl)amino hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia and certain allied and miscellaneous disorders. J Am Med Ass 132: 126–132

    Google Scholar 

  • Goodwin JW, Crowley J, Tranum B, Vance R, Slavik M, Balcerzak S, Hacker D (1987) Phase II trial of spirogermanium in central nervous system tumors: a Southwest Oncology Group study. Cancer Treat Rep 71: 99–100

    Google Scholar 

  • Green A (1986) The insulin-like effect of sodium vanadate on adipocyte glucose transport is mediated at a post-insulin-receptor level. Biochem J 238: 663–669

    Google Scholar 

  • Hacker MP, Douple EB, Krakhoff IH (eds) (1984) Platinum coordination complexes in cancer chemotherapy. Nijhoff, Boston

    Google Scholar 

  • Haiduc I, Silvestru C (1990) Metal compounds in cancer chemotherapy. Coord Chem Rev 99: 253–296

    Google Scholar 

  • Hart MM, Smith CF, Yancey ST, Adamson RH (1971) Toxicity and antitumor activity of gallium nitrate and periodically related metal salts. J Natl Cancer Inst 47: 1121–1127

    Google Scholar 

  • Hayes RL, Nelson B, Swartzendruber DC, Carlton JE, Byrd BL (1970) Gallium-67 localization in rat and mouse tumors. Science 167: 289–290

    Google Scholar 

  • Hedley DW, Tripp EH, Slowiaczek P, Mann GJ (1988) Effect of gallium on DNA synthesis by human T-cell lymphoblasts. Cancer Res 48: 3014–3018

    Google Scholar 

  • Heim ME, Bischoff H, Keppler BK (1990) Clinical studies with budotitane — a new non-platinum complex for cancer therapy. In: Collery P, Poirier LA, Manfait M, Etienne JC (eds) Metal ions in biology and medicine. Libbey, Paris, pp 508–510

    Google Scholar 

  • Henry MC, Rosen E, Port CD, Levine BS (1980) Toxicity of spirogermanium in mice and dogs after i.v. or i.m. administration. Cancer Treat Rep 64: 1207–1210

    Google Scholar 

  • Hervada T, Guglietta A, Nardi RV, Brown HR (1990) Gastric lesions induced by titanocene dichloride in rats. Proc 91st Ann Meet Am Gastroenterol Assoc, San Antonio, USA, A-58

  • Hill BT, Whatley SA, Bellamy AS, Jenkins LY, Whelan RDH (1982) Cytotoxic effects and biological activity of 2-aza-8-germaspiro(4,5)-decane-2-propanamine-8,8-diethyl-N,N-dimethyl dichloride (NSC 192965; spirogermanium) in vitro. Cancer Res 42: 2852–2856

    Google Scholar 

  • Hutson P, Evrard M, Cobleigh M, Lad T, McGuire WP, Cichock G (1986) Pharmacokinetic and pharmacodynamic studies of spirogermanium in advanced non-small cell lung cancer. Proc Am Soc Clin Oncol 5: 38

    Google Scholar 

  • Jabboury K, Frye D, Holmes FA, Fraschini G, Hortobagyi G (1989) Phase II evaluation of gallium nitrate by continuous infusion in breast cancer. Invest New Drugs 7: 225–229

    Google Scholar 

  • Kavanagh JJ, Saul PB, Copeland LJ, Gershenson DM, Krakoff IH (1985) Continuous-infusion spirogermanium for the treatment of refractory carcinoma of the ovary: a phase I trial. Cancer Treat Rep 69: 139–140

    Google Scholar 

  • Keller J, Bartolucci A, Carpenter JT, Feagler J (1986) Phase II evaluation of bolus gallium nitrate in lymphoproliferative disorders: a Southeastern Cancer Study Group trial. Cancer Treat Rep 70: 1221–1223

    Google Scholar 

  • Kelson DP, Alcock N, Yeh S, Brown J, Young C (1980) Pharmacokinetics of gallium nitrate in man. Cancer 46: 2009–2013

    Google Scholar 

  • Keppler BK, Berger MR, Heim ME (1990) New tumor-inhibiting metal complexes. Cancer Treat Rev 17: 261–277

    Google Scholar 

  • Keppler BK, Diez A, Seifried V (1985) Antitumor activity of phenyl substituted dihalogenobis(1-phenyl-1,3-butanedionato)titanium(IV) compounds. Arzneimittelforschung/Drug Res 35: 1832–1836

    Google Scholar 

  • Keppler BK, Friesen C, Moritz HG, Vongerichten H, Vogel E (1991) Tumor-inhibiting bis(β-diketonato)metal complexes. Budotitane, cis-diethoxybis(1-phenylbutane-1,3-dionato)titanium(IV). The first transition metal complex after platinum to qualify for clinical trials. Struct Bond 78: 97–127

    Google Scholar 

  • Keppler BK, Heim ME (1988) Antitumor-active bis-β-diketonato metal complexes: budotitane — a new antitumor agent. Drugs Future 13: 637–652

    Google Scholar 

  • Keppler BK, Schmähl D (1986) Preclinical evaluation of dichlorobis(1-phenylbutane-1,3-dionato)titanium(IV) and budotitane. Arzneimittelforschung/Drug Res 36: 1822–1828

    Google Scholar 

  • Köpf H, Köpf-Maier P (1979) Titanocen-dichlorid — das erste Metallocen mit cancerostatischer Wirksamkeit. Angew Chem 91: 509; Angew Chem Int Ed Engl 18: 477–478

    Google Scholar 

  • Köpf-Maier P (1985) Glucocorticoid induction of cleft palate after treatment with titanocene dichloride? Toxicol 37: 111–116

    Google Scholar 

  • Köpf-Maier P (1989) Tumor inhibition by titanocene complexes: influence on xenografted human adenocarcinomas of the gastrointestinal tract. Cancer Chemother Pharmacol 23: 225–230

    Google Scholar 

  • Köpf-Maier P (1990) Intracellular localization of titanium withinxenografted sensitive human tumors after treatment with the antitumor agent titanocene dichloride. J Struct Biol 105: 35–45

    Google Scholar 

  • Köpf-Maier P, Brauchle U, Henssler A (1988a) Transplacental passage of titanium after treatment with titanocene dichloride. Toxicol 48: 253–260

    Google Scholar 

  • Köpf-Maier P, Brauchle U, Henssler A (1988b) Organ distribution and pharmacokinetics of titanium after treatment with titanocene dichloride. Toxicol 51: 291–298

    Google Scholar 

  • Köpf-Maier P, Chares M (1994) Comparative study into the preclinical toxicity of vanadocene dichloride and titanocene acetonitrile tetrachloroferrate. Ann Oncol 5 [Suppl]: 185

    Google Scholar 

  • Köpf-Maier P, Erkenswick P (1984) Teratogenicity and embryotoxicity of titanocene dichloride in mice. Toxicol 33: 171–181

    Google Scholar 

  • Köpf-Maier P, Gerlach S (1986a) Pattern of toxicity by titanocene dichloride in mice. Blood and urine chemical parameters. J Cancer Res Clin Oncol 111: 243–247

    Google Scholar 

  • Köpf-Maier P, Gerlach S (1986b) Pattern of toxicity by titanocene dichloride in mice: hematologic parameters. Anticancer Res 6: 235–240

    Google Scholar 

  • Köpf-Maier P, Janiak C, Schumann H (1988c) Antitumor properties of organometallic metallocene complexes of tin and germanium. J Cancer Res Clin Oncol 114: 502–506

    Google Scholar 

  • Köpf-Maier P, Klapötke T (1988) Antitumor activity of some organometallic bismuth(III) thiolates. Inorg Chim Acta 152: 49–52

    Google Scholar 

  • Köpf-Maier P, Klapötke T (1992a) Antitumor activity of ionic niobocene and molybdenocene complexes in high oxidation states. J Cancer Res Clin Oncol 118: 216–221

    Google Scholar 

  • Köpf-Maier P, Klapötke T (1992b) Ionic rhenocene derivatives with antitumor activity. Cancer Chemother Pharmacol 29: 361–366

    Google Scholar 

  • Köpf-Maier P, Köpf H (1979) Vanadocen-dichlorid — ein weiteres Antitumor-Agens aus der Metallocenreihe. Z Naturforsch 34b: 805–807

    Google Scholar 

  • Köpf-Maier P, Köpf H (1988) Transition and main-group metal cyclopentadienyl complexes: preclinical studies on a series of antitumor agents of different structural type. Struct Bond 70: 103–185

    Google Scholar 

  • Köpf-Maier P, Köpf H (1994) Organometallic titanium, vanadium, niobium, molybdenum and rhenium complexes — early transition metal anti-tumor drugs. In: Fricker SP (ed) Metal compounds in cancer therapy. Chapman & Hall, London

    Google Scholar 

  • Köpf-Maier P, Köpf H, Neuse EW (1984) Ferricenium complexes: a new type of water-soluble antitumor agent. J Cancer Res Clin Oncol 108: 336–340

    Google Scholar 

  • Köpf-Maier P, Leitner M, Köpf H (1980) Tumor inhibition by metallocenes: antitumor activity of niobocene and tungstocene dichlorides. J Inorg Nucl Chem 42: 1789–1791

    Google Scholar 

  • Köpf-Maier P, Leitner M, Voigtländer R, Köpf H (1979) Molybdenocen-dichlorid als Antitumor-Agens. Z Naturforsch 34c: 1174–1176

    Google Scholar 

  • Köpf-Maier P, Neuse E, Klapötke T, Köpf H (1989) Ionic titanocene complexes: a new type of antitumor agent. Cancer Chemother Pharmacol 24: 23–27

    Google Scholar 

  • Krakoff IH, Newman RA, Goldberg RS (1979) Clinical toxicologic and pharmacologic studies of gallium nitrate. Cancer 44: 1722–1727

    Google Scholar 

  • Kreuser ED, Keppler BK, Berdel WE, Piest A, Thiel E (1992) Synergistic antitumor interactions between newly synthesized ruthenium complexes and cytokines in human colon carcinoma cell lines. Semin Oncol 19: 73–81

    Google Scholar 

  • Krumbhaar EB, Krumbhaar HD (1919) The blood and bone marrow in yellow cross gas (mustard gas) poisoning: changes produced in the bone marrow of fatal cases. J Med Res 40: 497–507

    Google Scholar 

  • Kuebler JP, Tormey DC, Harper GR, Chang YC, Khandekar JD, Falkson G (1984) Phase II study of spirogermanium in advanced breast cancer. Cancer Treat Rep 68: 1515–1516

    Google Scholar 

  • Kumano N, Ishikawa T, Koinumaru S, Kikumoto T, Suzuki S, Nakai Y, Konno K (1985) Antitumor effect of the organogermanium compound Ge-132 on the Lewis lung carcinoma (3LL) in C57BL/6 (B6) mice. Tohoku J Exp Med 146: 97–104

    Google Scholar 

  • Kumano N, Nakai Y, Ishikawa T, Koinumaru S, Suzuki S, Konno K (1978) Effect of carboxyethylgermanium sesquioxide on the methylcholanthrene-induced tumorigenesis in mice. Sci Rep Res Inst Tohoku Univ, Ser C, 25: 89–95

    Google Scholar 

  • Kuo LY, Kanatzidis MG, Marks TJ (1987) Metallocene antitumor agents. Unusual Mo(η5-C5H5)2Cl2 nucleotide/nucleobase aqueous coordination chemistry. J Am Chem Soc 109: 7207–7209

    Google Scholar 

  • Kuo LY, Kanatzidis MG, Sabat M, Tipton AL, Marks TJ (1991) Metallocene antitumor agents. Solution and solid-state molybdenocene coordination chemistry of DNA constituents. J Am Chem Soc 113: 9027–9045

    Google Scholar 

  • Larson SM, Rasey JS, Allen DR, Nelson NJ, Grunbaum Z, Harp GD, Williams DL (1980) Common pathway for tumor cell up-take of gallium-67 and iron-59 via a transferrin receptor. J Natl Cancer Inst 64: 41–53

    Google Scholar 

  • Legha SS, Ajani JA, Bodey GP (1983) Phase I trial of spirogermanium given daily. J Clin Oncol 1: 331–336

    Google Scholar 

  • McKeage MJ, Higgins III JD, Kelland LR (1991) Platinum and other metal coordination compounds in cancer chemotherapy. A commentary on the Sixth International Symposium in San Diego, California, 23–26 January 1991. Br J Cancer 64: 788–792

    Google Scholar 

  • McLaughlin ML, Cronan JM, Schaller TR, Snelling RD (1990) DNA-metal binding by antitumor-active metallocene dichlorides from inductively coupled plasma spectroscopy analysis: titanocene dichloride forms DNA-Cp2Ti or DNA-CpTi adducts depending on pH. J Am Chem Soc 112: 8949–8952

    Google Scholar 

  • Mattsson W (1980) A phase I study of spirogermanium. Proc Am Assoc Cancer Res 21: 194

    Google Scholar 

  • Mestroni G, Alessio E, Calligaris M, Attia WM, Quadrifoglio F, Cauci S, Sava G, Zorzet S, Pacor S, Monti-Bragadin C, Tamaro M, Dolzani L (1989) Chemical, biological and antitumor properties of ruthenium(II) complexes with dimethylsulfoxide. Progr Clin Biochem 10: 73–87

    Google Scholar 

  • Mirabelli CK, Johnson RK, Sung CM, Faucette L, Muirhead K, Crooke ST (1985) Evaluation of the in vivo antitumor activity and in vitro cytotoxic properties of auranofin, a coordinated gold compound, in murine tumor models. Cancer Res 45: 32–39

    Google Scholar 

  • Miyamoto TK, Sugita N, Matsumoto Y, Sasaki Y, Konno M (1983) A new antineoplastic methylgermanium(IV) porphyrin. Chem Letter 1695–1698

  • Murthy MS, Rao LN, Kuo LY, Toney JH, Marks TJ (1988) Antitumor and toxicologic properties of the organometallic anticancer agent vanadocene dichloride. Inorg Chim Acta 152: 117–124

    Google Scholar 

  • Newman RA, Brody AR, Krakoff IH (1979) Gallium nitrate (NSC-15 200) induced toxicity in the rat. Cancer 44: 1728–1740

    Google Scholar 

  • Nicolini M (ed) (1988) Platinum and other metal coordination compounds in cancer chemotherapy. Nijhoff, Boston

    Google Scholar 

  • Olver IN, Webster LK, Sephton RG, Bishop JF, Ball DL (1991) A phase II study with pharmacokinetics of gallium nitrate in non-small cell lung cancer. Proc Am Assoc Cancer Res 32: A-1132

  • Pacor S, Sava G, Ceschia V, Bregant F, Mestroni G, Alessio E (1991) Antineoplastic effects of mer-trichlorobisdimethylsul-phoxideaminorutheniumIII against murine tumors: comparison with cisplatin and with ImH[RuIm2Cl4]. Chem Biol Interact 78: 223–234

    Google Scholar 

  • Petering DH (1980) Carcinostatic copper complexes. In: Sigel H (ed) Metal ions in biological systems. Marcel Dekker, New York, pp 197–229

    Google Scholar 

  • Pinnamaneni K, Yap HY, Legha SS, Blumenschein GR, Bodey GP (1984) Phase II study of spirogermanium in the treatment of metastatic breast cancer. Cancer Treat Rep 68: 1197–1198

    Google Scholar 

  • Queißer W, Fiebig HH (eds) (1989) New drugs in oncology. Karger, Basel

    Google Scholar 

  • Rao PN, Smith ML, Pathak S, Howard RA, Bear JL (1980) Rhodium(II) butyrate: a potential anticancer drug with cell cycle phase-specific effects in HeLa cells. J Natl Cancer Inst 64: 905–912

    Google Scholar 

  • Rehder D (1991) Bioanorganische Chemie des Vanadiums. Angew Chem 103: 152–172

    Google Scholar 

  • Rice LM, Slavik M, Schein P (1977) Clinical brochure: spirogermanium (NSC-192965). National Cancer Institute, Bethesda, Md

    Google Scholar 

  • Rosenberg B, VanCamp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222: 385–386

    Article  CAS  PubMed  Google Scholar 

  • Sadler PJ (1991) Inorganic chemistry and drug design. Adv Inorg Chem 36: 1–48

    Google Scholar 

  • Saiers JH, Slavik M, Stephens RL, Crawford ED (1987) Therapy for advanced renal cell cancer with spirogermanium: a Southwest Oncology Group study. Cancer Treat Rep 71: 207–208

    Google Scholar 

  • Saiki JH, Baker LH, Stephens RL, Fabian CJ, Kraut EH, Fletcher WS (1982) Gallium nitrate in advanced soft tissue and bone sarcomas: a Southwest Oncology Group study. Cancer Treat Rep 66: 1673–1674

    Google Scholar 

  • Sato H, Iwaguchi A (1979) Antitumour effect of a novel organogermanium compound, Ge-132. Jap J Cancer Chemother 6: 79–83

    Google Scholar 

  • Sato I, Yuan BD, Nishimura T, Tanaka N (1985) Inhibition of tumour growth and metastasis in association with modification of immune response by novel organic germanium compounds. J Biol Resp Modif 4: 159–168

    Google Scholar 

  • Sava G, Giraldi T, Mestroni G, Zassinovich G (1983) Antitumor effects of rhodium(I), iridium(I) and ruthenium(II) complexes in comparison with cis-dichlorodiammino platinum(II) in mice bearing Lewis lung carcinoma. Chem Biol Interact 45: 1–6

    Google Scholar 

  • Sava G, Pacor S, Bregant F, Ceschia V (1991) Metal complexes of ruthenium: a potential class of selective anticancer drugs. Anticancer Res 11: 1103–1108

    Google Scholar 

  • Sava G, Pacor S, Mestroni G, Alessio E (1992) The evolution of ruthenium-based antitumor compounds: the antimetastatic action. Proc IVth Int Conf Anticancer Res, Rethymnon, Greece, pp 1788–1789

  • Sava G, Pacor S, Zorzet S, Alessio E, Mestroni G (1989a) Antitumour properties of dimethylsulphoxide ruthenium(II) complexes in the Lewis lung carcinoma system. Pharmacol Res 21: 617–628

    Google Scholar 

  • Sava G, Zorzet S, Giraldi T, Mestroni G, Zassinovich G (1984) Antineoplastic activity and toxicity of an organometallic complex of ruthenium(II) in comparison with cis-PDD in mice bearing solid malignant neoplasms. Eur J Cancer Clin Oncol 20: 841–847

    Google Scholar 

  • Sava G, Zorzet S, Pacor S, Mestroni G, Zassinovich G (1989b) Effects of two pyridinalalkyliminerhodium(I) complexes in mice bearing MCa mammary carcinoma. Cancer Chemother Pharmacol 24: 302–306

    Google Scholar 

  • Schein PS, Slavik M, Smythe T, Hoth D, Smith F, Macdonald JS, Woolley PV (1980) Phase I clinical trial of spirogermanium. Cancer Treat Rep 64: 1051–1056

    Google Scholar 

  • Scher HI, Curley T, Geller N, Dershaw D, Chan E, Nisselbaum J, Alcock N, Hollander P, Yagoda A (1987) Gallium nitrate in prostatic cancer: evaluation of antitumor activity and effects on bone turnover. Cancer Treat Rep 71: 887–893

    Google Scholar 

  • Schulman P, Davis RB, Rafla S, Green M, Henderson E (1984) Phase II trial of spirogermanium in advanced renal cell carcinoma: a cancer and leukemia B study. Cancer Treat Rep 68: 1305–1306

    Google Scholar 

  • Seidman A, Scher H, Sternberg C, Bajorin DF, Curley T, Sternberg C, Silverberg M, Dershaw D, Yagoda A, Bosl GJ (1991) Gallium nitrate: an active agent in patients with advanced refractory transitional cell carcinoma of the urothelium. Proc Am Soc Clin Oncol 10: A-520

  • Sekar N, Govindasamy S (1991) Insulin mimetic role of vanadate on plasma membrane insulin-receptors. Biochem Int 23: 461–466

    Google Scholar 

  • Sephton R, De Abrew S (1990) Mechanism of gallium uptake in tumours. In: Collery P, Poirier LA, Manfait M, Etienne JC (eds) Metal ions in biology and medicine Libbey, Paris, pp 393–397

    Google Scholar 

  • Shaw CF III, Beery A, Stocco GC (1986) Anti-tumor activity of two binuclear gold(I) complexes with bridging dithiolate ligands. Inorg Chim Acta 123: 213–216

    Google Scholar 

  • Silvestru C, Socaciu C, Bara A, Haiduc I (1990) The first organoantimony(III) compounds possessing antitumor properties: diphenylantimony(III) derivatives of dithiophosphorus ligands. Anticancer Res 10: 803–804

    Google Scholar 

  • Simon TM, Kunishima DH, Vibert GJ, Lorber A (1979) Inhibitory effects of a new oral gold compound on HeLa cells. Cancer 44: 1965–1975

    Google Scholar 

  • Slavik M, Blanc O, Davis J (1987) Spirogermanium: a new investigational drug of novel structure and lack of bone marrow toxicity. Invest New Drugs 1: 223–234

    Google Scholar 

  • Srivastava SC, Mausner LF, Clarke MJ (1989) Radioruthenium-labeled compounds for diagnostic tumor imaging. Progr Clin Biochem 10: 111–149

    Google Scholar 

  • Suzuki F, Pollard RB (1984) Prevention of suppressed interferon gamma production in thermally injured mice by administration of a novel organogermanium compound, Ge-132. J Interferon Res 4: 223

    Google Scholar 

  • Todd PA, Fitton A (1991) Gallium nitrate, a review of its pharmacological properties and therapeutic potential in cancer-related hypercalcaemia. Drugs 42: 261–273

    Google Scholar 

  • Toney JH, Brock CP, Marks TJ (1986) Aqueous coordination chemistry of vanadocene dichloride, V(η5-C5H5)2Cl2, with nucleotides and phosphoesters. Mechanistic implications for a new class of antitumor agents. J Am Chem Soc 108: 7263–7274

    Google Scholar 

  • Toney JH, Murthy MS, Marks TJ (1985) Biodistribution and pharmacokinetics of vanadium following intraperitoneal administration of vanadocene dichloride to mice. Chem Biol Interact 56: 45–54

    Google Scholar 

  • Trope C, Mattsson W, Gynning I, Johnsson JE, Sigurdsson K, Orbert B (1981) Phase II study of spirogermanium in advanced ovarian malignancy. Cancer Treat Rep 65: 119–120

    Google Scholar 

  • Vogelzang NJ, Gesme DH, Kennedy BJ (1985) A phase II study of spirogermanium in advanced human malignancy. Am J Clin Oncol 8: 341–344

    Google Scholar 

  • Vugrin D, Einhorn LH, Birch R (1987) Phase II trial of gallium nitrate in patients with metastatic renal carcinoma. A SECSG study. Proc Am Assoc Cancer Res 28: 203

    Google Scholar 

  • Waalkes TP, Sanders K, Smith RG, Adamson RH (1974) DNA polymerases of Walker 256 carcinosarcoma. Cancer Res 34: 385–391

    Google Scholar 

  • Ward SG, Taylor RC (1988) Anti-tumor activity of the main-group metallic elements: aluminium, gallium, indium, thallium, germanium, lead, antimony and bismuth. In: Gielen M (ed) Metal-based anti-tumour drugs. Freund Publ House Ltd, London, pp 1–54

    Google Scholar 

  • Warrell RP (1991) Clinical trials of gallium nitrate in patients with cancer-related hypercalcemia. Sem Oncol 18: 26–31

    Google Scholar 

  • Warrell RP, Alcock NW, Bockman RS (1987) Gallium nitrate inhibits accelerated bone turnover in patients with bone metastases. J Clin Oncol 5: 292–298

    Google Scholar 

  • Warrell RP, Coonley CJ, Straus DJ, Young CW (1983) Treatment of patients with advanced malignant lymphoma using gallium nitrate administered as a seven-day continuous infusion. Cancer 51: 1982–1987

    Google Scholar 

  • Warrell RP, Israel R, Frisone M, Snyder T, Gaynor JJ, Bockman RS (1988) Gallium nitrate for acute treatment of cancer-related hypercalcemia. A randomized, double-blind comparison to calcitonin. Ann Intern Med 108: 669–674

    Google Scholar 

  • Weick JK, Stephens RL, Baker LH, Jones SE (1983) Gallium nitrate in malignant lymphoma: a Southwest Oncology Group study. Cancer Treat Rep 67: 823–825

    Google Scholar 

  • Whelan RD, Hill BT (1982) Spirogermanium, a new type of antitumour agent: cytotoxic effects and biological activity. Br J Cancer 45: 639

    Google Scholar 

  • Williams DR (1974) Bioinorganic drugs-1. Educ Chem 124–127

  • Woolley P, Priego V, Luc V, Bollenbacher P, Schein P (1983) A phase I trial of spirogermanium administered as a five day continuous infusion. Proc Am Assoc Cancer Res 24: 539

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Köpf-Maier, P. Complexes of metals other than platinum as antitumour agents. Eur J Clin Pharmacol 47, 1–16 (1994). https://doi.org/10.1007/BF00193472

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00193472

Key words

Navigation