Skip to main content

Targets and Strategies for the Mitochondrial Assault on Cancer

  • Chapter
  • First Online:
Mitochondria: The Anti- cancer Target for the Third Millennium

Abstract

Mitochondria-directed anti-cancer agents (“mitocans”) represent a novel approach to cancer therapy. To optimize their effectiveness researchers need to identify appropriate targets and mechanisms of action, and to adopt a molecular design and/or delivery strategy ensuring that the drugs act at the mitochondrial level. Here we review: (i) the major options available for mitochondrial targeting: so far most studies have taken advantage of the high mitochondrial transmembrane potential; (ii) one set of possible targets: membrane channels exploited as transducers of a death signal; (iii) the induction of redox stress at mitochondria as a promising approach to cancerous cell destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AIF:

Apoptosis-Inducing Factor

ALS:

Amyotrophic Lateral Sclerosis

ANT:

Adenine Nucleotide Translocator (exchanger)

ATR:

Atractyloside

BGK:

Bongkrekate

BLM:

Black Lipid Membrane (planar bilayer)

CAT:

Catalase

ChTx:

Charybdotoxin

CNS:

Central Nervous System

COX:

Cyclooxigenase

CSA:

Cyclosporin A

Cyp D:

Cyclophilin D

Δψ:

mitochondrial transmembrane electrical potential

EndoG:

Endonuclease G

eNOS:

endothelial NO Synthase

ER:

Endoplasmic Reticulum

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GSK:

Glycogen Synthase Kinase

HIF:

Hypoxia-Inducible Factor

HK:

Hexokinase

HPC:

Hypoxic preconditioning

HSP:

Heat Shock Protein

IbTx:

Iberiotoxin

IMM:

Inner Mitochondrial Membrane

I/R:

Ischemia/Reperfusion

MAC:

Mitochondrial Apoptosis-induced Channel

MCU:

Mitochondrial Ca2+ Uniporter

MEF:

Mouse Embryonic Fibroblast

MgTx:

Margatoxin

mitoVES:

mitochondria-targeted Vitamin E Succinate

MPTP:

Mitochondrial Permeability Transition Pore

mtBzR:

mitochondrial Benodiazepine Receptor

OMM:

Outer Mitochondrial membrane

PE:

PhosphatidylEthanolamine

PEG:

PolyEthyleneGlycol

PHDs:

Prolyl Hydroxylase Domain enzymes

PM:

Plasma Membrane

PPi:

Pyrophosphate

PTX:

Paclitaxel

RIPK1:

Receptor-Interacting serine/threonine-Protein Kinase 1

ROS:

Reactive Oxygen Species

ShK:

Stichodactyla toxin

SOD:

Superoxide Dismutase

SR:

Sarcoplasmic Reticulum

TNF:

Tumour Necrosis Factor

TPP:

Triphenylphosphonium

TRAIL:

TNF-Related Apoptosis-Inducing Ligand

TRAP-1:

Tumour necrosis factor Receptor-Associated Protein-1

TSPO:

Translocator Protein

VDAC:

Voltage-Dependent Anion Channel (mitochondrial porin)

WT:

Wild Type

References

  • Abu-Gosh SE, Kolvazon N, Tirosh B, Ringel I, Yavin E (2009) Multiple triphenylphosphonium cations shuttle a hydrophilic peptide into mitochondria. Mol Pharm 6:1138–1144

    CAS  PubMed  Google Scholar 

  • Abu-Hamad S, Sivan S, Shoshan-Barmatz V (2006) The expression level of the voltage-dependent anion channel controls life and death of the cell. Proc Natl Acad Sci U S A 103:5787–5792

    CAS  PubMed Central  PubMed  Google Scholar 

  • Abu-Hamad S, Zaid H, Israelson A, Nahon E, Shoshan-Barmatz V (2008) Hexokinase-I protection against apoptotic cell death is mediated via interaction with the voltage-dependent anion channel-1: mapping the site of binding. J Biol Chem 283:13482–13490

    CAS  PubMed  Google Scholar 

  • Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V (2009) The VDAC1 N-terminus is essential both for apoptosis and the protective effect of anti-apoptotic proteins. J Cell Sci 122:1906–1916

    CAS  PubMed  Google Scholar 

  • Adelsberger-Mangan DM, Colombini M (1987) Elimination and restoration of voltage dependence in the mitochondrial channel, VDAC, by graded modification with succinic anhydride. J Membr Biol 98:157–168

    CAS  PubMed  Google Scholar 

  • Altieri DC (2013a) Hsp90 regulation of mitochondrial protein folding: from organelle integrity to cellular homeostasis. Cell Mol Life Sci 70(14):2463–2472

    CAS  PubMed  Google Scholar 

  • Altieri DC (2013b) Mitochondrial HSP90s and tumor cell metabolism. Autophagy 9:244–245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altieri DC, Stein GS, Lian JB, Languino LR (2012) TRAP-1, the mitochondrial Hsp90. Biochim Biophys Acta 1823:767–773

    CAS  PubMed Central  PubMed  Google Scholar 

  • Anders MW (1995) Mitochondrial bioactivation of cysteine S-conjugates and 4-thiaalkanoates: implications for mitochondrial dysfunction and mitochondrial diseases. Biochim Biophys Acta 1271:51–57

    PubMed  Google Scholar 

  • Anders MW (2011) Putting bioactivation reactions to work: targeting antioxidants to mitochondria. Chem Biol Interact 192:8–13

    CAS  PubMed  Google Scholar 

  • Andreadou I, Iliodromitis EK, Koufaki M, Kremastinos DT (2008) Pharmacological pre- and post- conditioning agents: reperfusion-injury of the heart revisited. Mini Rev Med Chem 8:952–959

    CAS  PubMed  Google Scholar 

  • Angelin A, Bonaldo P, Bernardi P (2008) Altered threshold of the mitochondrial permeability transition pore in Ullrich congenital muscular dystrophy. Biochim Biophys Acta 1777:893–896

    CAS  PubMed  Google Scholar 

  • Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24:2096–2103

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arbel N, Shoshan-Barmatz V (2010) Voltage-dependent anion channel 1-based peptides interact with Bcl-2 to prevent antiapoptotic activity. J Biol Chem 285:6053–6062

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arbel N, Ben-Hail D, Shoshan-Barmatz V (2012) Mediation of the antiapoptotic activity of Bcl-xL protein upon interaction with VDAC1 protein. J Biol Chem 287:23152–23161

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arcangeli A, Crociani O, Lastraioli E, Masi A, Pillozzi S, Becchetti A (2009) Targeting ion channels in cancer: a novel frontier in antineoplastic therapy. Curr Med Chem 16:66–93

    CAS  PubMed  Google Scholar 

  • Arcangeli A, Pillozzi S, Becchetti A (2012) Targeting ion channels in leukemias: a new challenge for treatment. Curr Med Chem 19:683–696

    CAS  PubMed  Google Scholar 

  • Armstrong CM (2003) Voltage-gated K channels. Sci STKE 2003(188), re10.

    Google Scholar 

  • Armstrong JS (2006) Mitochondria: a target for cancer therapy. Br J Pharmacol 147:239–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 486:95–102

    CAS  PubMed Central  PubMed  Google Scholar 

  • Atkinson J, Kapralov AA, Yanamala N, Tyurina YY, Amoscato AA, Pearce L, Peterson J, Huang Z, Jiang J, Samhan-Arias AK, Maeda A, Feng W, Wasserloos K, Belikova NA, Tyurin VA, Wang H, Fletcher J, Wang Y, Vlasova II, Klein-Seetharaman J, Stoyanovsky DA, Bayîr H, Pitt BR, Epperly MW, Greenberger JS, Kagan VE (2011) A mitochondria-targeted inhibitor of cytochrome c peroxidase mitigates radiation-induced death. Nat Commun 2:497

    PubMed Central  PubMed  Google Scholar 

  • Aviv Y, Shaw J, Gang H, Kirshenbaum LA (2011) Regulation of autophagy in the heart: “you only live twice”. Antioxid Redox Signal 14:2245–2250

    CAS  PubMed  Google Scholar 

  • Azarashvili T, Stricker R, Reiser G (2010) The mitochondria permeability transition pore complex in the brain with interacting proteins - promising targets for protection in neurodegenerative diseases. Biol Chem 391:619–629

    CAS  PubMed  Google Scholar 

  • Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett 584:2504–2509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Azzolin L, Antolini N, Calderan A, Ruzza P, Sciacovelli M, Marin O, Mammi S, Bernardi P, Rasola A (2011) Antamanide, a derivative of Amanita phalloides, is a novel inhibitor of the mitochondrial permeability transition pore. PLoS One 6:e16280

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baines CP (2009a) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104:181–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baines CP (2009b) The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol 46:850–857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baines CP (2011) The mitochondrial permeability transition pore and the cardiac necrotic program. Pediatr Cardiol 32:258–262

    PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662

    CAS  PubMed  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Balmain A, Barrett JC, Moses H, Renan MJ (1993) How many mutations are required for tumorigenesis? Implications for human cancer data. Mol Carcinog 7:139–146

    Google Scholar 

  • Barbosa IA, Machado NG, Skildum AJ, Scott PM, Oliveira PJ (2012) Mitochondrial remodeling in cancer metabolism and survival: potential for new therapies. Biochim Biophys Acta 1826:238–254

    CAS  PubMed  Google Scholar 

  • Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of cyclophilin D. J Biol Chem 280:18558–18561

    CAS  PubMed  Google Scholar 

  • Basso E, Petronilli V, Forte MA, Bernardi P (2008) Phosphate is essential for inhibition of the mitochondrial permeability transition pore by cyclosporin A and by cyclophilin D ablation. J Biol Chem 283:26307–26311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Báthori G, Szabó I, Schmehl I, Tombola F, Messina A, De Pinto V, Zoratti M (1998) Novel aspects of the electrophysiology of mitochondrial porin. Biochem Biophys Res Commun 243:258–263

    PubMed  Google Scholar 

  • Bauer AJ, Gieschler S, Lemberg KM, McDermott AE, Stockwell BR (2011) Functional model of metabolite gating by human voltage-dependent anion channel 2. Biochemistry 50:3408–3410

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bayrhuber M, Meins T, Habeck M, Becker S, Giller K, Villinger S, Vonrhein C, Griesinger C, Zweckstetter M, Zeth K (2008) Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci U S A 105:15370–15375

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bednarczyk P, Kowalczyk JE, Beresewicz M, Dołowy K, Szewczyk A, Zabłocka B (2010) Identification of a voltage-gated potassium channel in gerbil hippocampal mitochondria. Biochem Biophys Res Commun 397:614–620

    CAS  PubMed  Google Scholar 

  • Belikova NA, Jiang J, Stoyanovsky DA, Glumac A, Bayir H, Greenberger JS, Kagan VE (2009) Mitochondria-targeted (2-hydroxyamino-vinyl)-triphenyl-phosphonium releases NO(.) and protects mouse embryonic cells against irradiation-induced apoptosis. FEBS Lett 583:1945–1950

    CAS  PubMed Central  PubMed  Google Scholar 

  • Belliere J, Devun F, Cottet-Rousselle C, Batandier C, Leverve X, Fontaine E (2012) Prerequisites for ubiquinone analogs to prevent mitochondrial permeability transition-induced cell death. J Bioenerg Biomembr 44:207–212

    CAS  PubMed  Google Scholar 

  • Benz R (1990) Biophysical properties of porin pores from mitochondrial outer membrane of eukaryotic cells. Experientia 46:131–137

    CAS  PubMed  Google Scholar 

  • Benz R, Brdiczka D (1992) The cation-selective substate of the mitochondrial outer membrane pore: single-channel conductance and influence on intermembrane and peripheral kinases. J Bioenerg Biomembr 24:33–39

    CAS  PubMed  Google Scholar 

  • Benz R, Kottke M, Brdiczka D (1990) The cationically selective state of the mitochondrial outer membrane pore: a study with intact mitochondria and reconstituted mitochondrial porin. Biochim Biophys Acta 1022:311–318

    CAS  PubMed  Google Scholar 

  • Beraud E, Chandy KG (2011) Therapeutic potential of peptide toxins that target ion channels. Inflamm Allergy Drug Targets 10:322–342

    CAS  PubMed  Google Scholar 

  • Bernardi P (1996) The permeability transition pore. Control points of a cyclosporin A-sensitive mitochondrial channel involved in cell death. Biochim Biophys Acta 1275:5–9

    PubMed  Google Scholar 

  • Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95. doi:10.3389/fphys.2013.00095

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernardi P, Bonaldo P (2008) Dysfunction of mitochondria and sarcoplasmic reticulum in the pathogenesis of collagen VI muscular dystrophies. Ann N Y Acad Sci 1147:303–311

    CAS  PubMed  Google Scholar 

  • Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28:131–138

    CAS  PubMed  Google Scholar 

  • Bernardi P, Rasola A (2007) Calcium and cell death: the mitochondrial connection. Subcell Biochem 45:481–506

    CAS  PubMed  Google Scholar 

  • Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca2+ release channel: new answers to an old question. Cell Calcium 52:22–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bernardi P, Colonna R, Costantini P, Eriksson O, Fontaine E, Ichas F, Massari S, Nicolli A, Petronilli V, Scorrano L (1998) The mitochondrial permeability transition. Biofactors 8:273–281

    CAS  PubMed  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. FEBS J 273:2077–2099

    CAS  PubMed  Google Scholar 

  • Bialik S, Kimchi A (2006) The death-associated protein kinases: structure, function, and beyond. Annu Rev Biochem 75:189–210

    CAS  PubMed  Google Scholar 

  • Biasutto L, Mattarei A, Marotta E, Bradaschia A, Sassi N, Garbisa S, Zoratti M, Paradisi C (2008) Development of mitochondria-targeted derivatives of resveratrol. Bioorg Med Chem Lett 18:5594–5597

    CAS  PubMed  Google Scholar 

  • Biasutto L, Dong LF, Zoratti M, Neuzil J (2010) Mitochondrially targeted anti-cancer agents. Mitochondrion 10:670–681. Erratum in: Mitochondrion (2011),11:996

    Google Scholar 

  • Biasutto L, Szabò I, Zoratti M (2011) Mitochondrial effects of plant-made compounds. Antioxid Redox Signal 15:3039–3059

    CAS  PubMed  Google Scholar 

  • Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87:1427–1435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Billard C (2013) BH3 mimetics: status of the field and new developments. Mol Cancer Ther 12:1691–1700

    Google Scholar 

  • Biswas S, Dodwadkar NS, Sawant RR, Koshkaryev A, Torchilin VP (2011) Surface modification of liposomes with rhodamine-123-conjugated polymer results in enhanced mitochondrial targeting. J Drug Target 19:552–561

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biswas S, Dodwadkar NS, Deshpande PP, Torchilin VP (2012a) Liposomes loaded with paclitaxel and modified with novel triphenylphosphonium-PEG-PE conjugate possess low toxicity, target mitochondria and demonstrate enhanced antitumor effects in vitro and in vivo. J Control Release 159:393–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Biswas S, Dodwadkar NS, Piroyan A, Torchilin VP (2012b) Surface conjugation of triphenylphosphonium to target poly(amidoamine) dendrimers to mitochondria. Biomaterials 33:4773–4782

    CAS  PubMed Central  PubMed  Google Scholar 

  • Blachly-Dyson E, Peng S, Colombini M, Forte M (1990) Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications. Science 247:1233–1236

    CAS  PubMed  Google Scholar 

  • Blachly-Dyson E, Zambronicz EB, Yu WH, Adams V, McCabe ER, Adelman J, Colombini M, Forte M (1993) Cloning and functional expression in yeast of two human isoforms of the outer mitochondrial membrane channel, the voltage-dependent anion channel. J Biol Chem 268:1835–1841

    CAS  PubMed  Google Scholar 

  • Blagosklonny MV (2008) Aging: ROS or TOR. Cell Cycle 7:3344–3354

    CAS  PubMed  Google Scholar 

  • Boengler K, Heusch G, Schulz R (2011) Mitochondria in postconditioning. Antioxid Redox Signal 14:863–880

    CAS  PubMed  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, Lee CT, Lopaschuk GD, Puttagunta L, Bonnet S, Harry G, Hashimoto K, Porter CJ, Andrade MA, Thebaud B, Michelakis ED (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    CAS  PubMed  Google Scholar 

  • Brabant M, Baux L, Casimir R, Briand JP, Chaloin O, Porceddu M, Buron N, Chauvier D, Lassalle M, Lecoeur H, Langonné A, Dupont S, Déas O, Brenner C, Rebouillat D, Muller S, Borgne-Sanchez A, Jacotot E (2009) A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice. Apoptosis 14:1190–1203

    CAS  PubMed  Google Scholar 

  • Brenner C, Moulin M (2012) Physiological roles of the permeability transition pore. Circ Res 111:1237–1247

    CAS  PubMed  Google Scholar 

  • Broekemeier KM, Dempsey ME, Pfeiffer DR (1989) Cyclosporin A is a potent inhibitor of the inner membrane permeability transition in liver mitochondria. J Biol Chem 264:7826–7830

    CAS  PubMed  Google Scholar 

  • Broekemeier KM, Klocek CK, Pfeiffer DR (1998) Proton selective substate of the mitochondrial permeability transition pore: regulation by the redox state of the electron transport chain. Biochemistry 37:13059–13065

    CAS  PubMed  Google Scholar 

  • Brustovetsky T, Li T, Yang Y, Zhang JT, Antonsson B, Brustovetsky N (2010) BAX insertion, oligomerization, and outer membrane permeabilization in brain mitochondria: role of permeability transition and SH-redox regulation. Biochim Biophys Acta 1797:1795–1806

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cahalan MD, Chandy KG (2009) The functional network of ion channels in T lymphocytes. Immunol Rev 231:59–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campello S, De Marchi U, Szabò I, Tombola F, Martinou JC, Zoratti M (2005) The properties of the mitochondrial megachannel in mitoplasts from human colon carcinoma cells are not influenced by Bax. FEBS Lett 579:3695–3700

    CAS  PubMed  Google Scholar 

  • Cardaci S, Desideri E, Ciriolo MR (2012) Targeting aerobic glycolysis: 3-bromopyruvate as a promising anticancer drug. J Bioenerg Biomembr 44:17–29

    CAS  PubMed  Google Scholar 

  • Cavalcanti BC, da Costa PM, Carvalho AA, Rodrigues FA, Amorim RC, Silva EC, Pohlit AM, Costa-Lotufo LV, Moraes MO, Pessoa C (2012) Involvement of intrinsic mitochondrial pathway in neosergeolide-induced apoptosis of human HL-60 leukemia cells: the role of mitochondrial permeability transition pore and DNA damage. Pharm Biol 50:980–993

    CAS  PubMed  Google Scholar 

  • Cavalieri E, Bergamini C, Mariotto S, Leoni S, Perbellini L, Darra E, Suzuki H, Fato R, Lenaz G (2009) Involvement of mitochondrial permeability transition pore opening in alpha-bisabolol induced apoptosis. FEBS J 276:3990–4000

    CAS  PubMed  Google Scholar 

  • Chalmers S, Caldwell ST, Quin C, Prime TA, James AM, Cairns AG, Murphy MP, McCarron JG, Hartley RC (2012) Selective uncoupling of individual mitochondria within a cell using a mitochondria-targeted photoactivated protonophore. J Am Chem Soc 134:758–761

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM, Schumacker PT (2000) Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: a mechanism of O2 sensing. J Biol Chem 275:25130–25138

    CAS  PubMed  Google Scholar 

  • Chen LB (1988) Mitochondrial membrane potential in living cells. Annu Rev Cell Biol 4:155–181

    CAS  PubMed  Google Scholar 

  • Chen Y, Sánchez A, Rubio ME, Kohl T, Pardo LA, Stühmer W (2011) Functional K(v)10.1 channels localize to the inner nuclear membrane. PLoS One 6:e19257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen W, Feng L, Nie H, Zheng X (2012) Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore. Carcinogenesis 33:2190–2198

    CAS  PubMed  Google Scholar 

  • Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517

    CAS  PubMed  Google Scholar 

  • Cheng Y, Gulbins E, Siemen D (2011) Activation of the permeability transition pore by Bax via inhibition of the mitochondrial BK channel. Cell Physiol Biochem 27:191–200

    CAS  PubMed  Google Scholar 

  • Chernyak BV, Antonenko YN, Domnina LV, Ivanova OY, Lyamzaev KG, Pustovidko AV, Rokitskaya TI, Severina II, Simonyan RA, Trendeleva TA, Zvyagilskaya RA (2013) Novel penetrating cations for targeting mitochondria. Curr Pharm Des 19(15):2795–2806

    CAS  PubMed  Google Scholar 

  • Chi V, Pennington MW, Norton RS, Tarcha EJ, Londono LM, Sims-Fahey B, Upadhyay SK, Lakey JT, Iadonato S, Wulff H, Beeton C, Chandy KG (2012) Development of a sea anemone toxin as an immunomodulator for therapy of autoimmune diseases. Toxicon 59:529–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiara F, Castellaro D, Marin O, Petronilli V, Brusilow WS, Juhaszova M, Sollott SJ, Forte M, Bernardi P, Rasola A (2008) Hexokinase II detachment from mitochondria triggers apoptosis through the permeability transition pore independent of voltage-dependent anion channels. PLoS One 3:e1852

    PubMed Central  PubMed  Google Scholar 

  • Chiara F, Gambalunga A, Sciacovelli M, Nicolli A, Ronconi L, Fregona D, Bernardi P, Rasola A, Trevisan A (2012) Chemotherapeutic induction of mitochondrial oxidative stress activates GSK-3α/β and Bax, leading to permeability transition pore opening and tumor cell death. Cell Death Dis 3:e444

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi BH, Hahn SJ (2010) Kv1.3: a potential pharmacological target for diabetes. Acta Pharmacol Sin 31:1031–1035

    CAS  PubMed  Google Scholar 

  • Choudhary OP, Ujwal R, Kowallis W, Coalson R, Abramson J, Grabe M (2010) The electrostatics of VDAC: implications for selectivity and gating. J Mol Biol 396:580–592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chung-man Ho J, Zheng S, Comhair SA, Farver C, Erzurum SC (2001) Differential expression of manganese superoxide dismutase and catalase in lung cancer. Cancer Res 61:8578–8585

    CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762

    CAS  PubMed Central  PubMed  Google Scholar 

  • Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645

    CAS  PubMed  Google Scholar 

  • Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111:103–111

    CAS  PubMed  Google Scholar 

  • Colombini M, Mannella CA (2012) VDAC, The early days. Biochim Biophys Acta 1818:1438–1443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92:1042–1053

    CAS  PubMed  Google Scholar 

  • Cour M, Gomez L, Mewton N, Ovize M, Argaud L (2011) Postconditioning: from the bench to bedside. J Cardiovasc Pharmacol Ther 16:117–130

    CAS  PubMed  Google Scholar 

  • Crompton M, Ellinger H, Costi A (1988) Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J 255:357–360

    CAS  PubMed Central  PubMed  Google Scholar 

  • D’Souza GG, Weissig V (2009) Subcellular targeting: a new frontier for drug-loaded pharmaceutical nanocarriers and the concept of the magic bullet. Expert Opin Drug Deliv 6:1135–1148

    PubMed  Google Scholar 

  • D’Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V (2003) DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92:189–197

    PubMed  Google Scholar 

  • D’Souza GG, Cheng SM, Boddapati SV, Horobin RW, Weissig V (2008) Nanocarrier-assisted sub-cellular targeting to the site of mitochondria improves the pro-apoptotic activity of paclitaxel. J Drug Target 16:578–585

    PubMed  Google Scholar 

  • Das S, Steenbergen C, Murphy E (2012) Does the voltage dependent anion channel modulate cardiac ischemia-reperfusion injury? Biochim Biophys Acta 1818:1451–1456

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Marchi U, Campello S, Szabò I, Tombola F, Martinou JC, Zoratti M (2004) Bax does not directly participate in the Ca(2+)-induced permeability transition of isolated mitochondria. J Biol Chem 279:37415–37422

    PubMed  Google Scholar 

  • De Marchi U, Basso E, Szabò I, Zoratti M (2006) Electrophysiological characterization of the Cyclophilin D-deleted mitochondrial permeability transition pore. Mol Membr Biol 23:521–530

    PubMed  Google Scholar 

  • De Marchi U, Szabò I, Cereghetti GM, Hoxha P, Craigen WJ, Zoratti M (2008) A maxi-chloride channel in the inner membrane of mammalian mitochondria. Biochim Biophys Acta 1777:1438–1448

    PubMed  Google Scholar 

  • De Marchi U, Biasutto L, Garbisa S, Toninello A, Zoratti M (2009a) Quercetin can act either as an inhibitor or an inducer of the mitochondrial permeability transition pore: a demonstration of the ambivalent redox character of polyphenols. Biochim Biophys Acta 1787:1425–1432

    PubMed  Google Scholar 

  • De Marchi U, Sassi N, Fioretti B, Catacuzzeno L, Cereghetti GM, Szabò I, Zoratti M (2009b) Intermediate conductance Ca2+-activated potassium channel (KCa3.1) in the inner mitochondrial membrane of human colon cancer cells. Cell Calcium 45:509–516

    PubMed  Google Scholar 

  • De Pinto V, Ludwig O, Krause J, Benz R, Palmieri F (1987) Porin pores of mitochondrial outer membranes from high and low eukaryotic cells: biochemical and biophysical characterization. Biochim Biophys Acta 894:109–119

    PubMed  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabò I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    PubMed  Google Scholar 

  • De Stefani D, Bononi A, Romagnoli A, Messina A, De Pinto V, Pinton P, Rizzuto R (2012) VDAC1 selectively transfers apoptotic Ca2+ signals to mitochondria. Cell Death Differ 19:267–273

    PubMed Central  PubMed  Google Scholar 

  • Dejean LM, Ryu SY, Martinez-Caballero S, Teijido O, Peixoto PM, Kinnally KW (2010) MAC and Bcl-2 family proteins conspire in a deadly plot. Biochim Biophys Acta 1797:1231–1238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deniaud A, Hoebeke J, Briand JP, Muller S, Jacotot E, Brenner C (2006) Peptido-targeting of the mitochondrial transition pore complex for therapeutic apoptosis induction. Curr Pharm Des 12:4501–4511

    CAS  PubMed  Google Scholar 

  • Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70:191–199

    PubMed  Google Scholar 

  • Di Lisa F, Bernardi P (2009) A CaPful of mechanisms regulating the mitochondrial permeability transition. J Mol Cell Cardiol 46:775–780

    PubMed  Google Scholar 

  • Di Lisa F, Canton M, Menabò R, Dodoni G, Bernardi P (2003) Mitochondria and reperfusion injury. The role of permeability transition. Basic Res Cardiol 98:235–241

    PubMed  Google Scholar 

  • Di Lisa F, Kaludercic N, Carpi A, Menabò R, Giorgio M (2009) Mitochondrial pathways for ROS formation and myocardial injury: the relevance of p66(Shc) and monoamine oxidase. Basic Res Cardiol 104:131–139

    PubMed  Google Scholar 

  • Di Lisa F, Carpi A, Giorgio V, Bernardi P (2011a) The mitochondrial permeability transition pore and cyclophilin D in cardioprotection. Biochim Biophys Acta 1813:1316–1322

    PubMed  Google Scholar 

  • Di Lisa F, Canton M, Carpi A, Kaludercic N, Menabò R, Menazza S, Semenzato M (2011b) Mitochondrial injury and protection in ischemic pre- and postconditioning. Antioxid Redox Signal 14:881–891

    PubMed  Google Scholar 

  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, Morrison B 3rd, Stockwell BR (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong LF, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marín-Hernández A, Hernández-Esquivel L, Rodríguez-Enríquez S, Stursa J, Witting PK, Stantic B, Rohlena J, Truksa J, Kluckova K, Dyason JC, Ledvina M, Salvatore BA, Moreno-Sánchez R, Coster MJ, Ralph SJ, Smith RA, Neuzil J (2011a) Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity via mitochondrial complex II. J Biol Chem 286:3717–3728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong LF, Jameson VJ, Tilly D, Prochazka L, Rohlena J, Valis K, Truksa J, Zobalova R, Mahdavian E, Kluckova K, Stantic M, Stursa J, Freeman R, Witting PK, Norberg E, Goodwin J, Salvatore BA, Novotna J, Turanek J, Ledvina M, Hozak P, Zhivotovsky B, Coster MJ, Ralph SJ, Smith RA, Neuzil J (2011b) Mitochondrial targeting of α-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm for effective cancer therapy. Free Radic Biol Med 50:1546–1555

    CAS  PubMed  Google Scholar 

  • Dorn GW 2nd (2010a) Mechanisms of non-apoptotic programmed cell death in diabetes and heart failure. Cell Cycle 9:3442–3448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dorn GW 2nd (2010b) Mitochondrial pruning by Nix and BNip3: an essential function for cardiac-expressed death factors. J Cardiovasc Transl Res 3:374–383

    PubMed Central  PubMed  Google Scholar 

  • Dorn GW 2nd (2011) Nix nought nothing: fairy tale or real deal. J Mol Cell Cardiol 51:497–500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du H, Yan SS (2010) Mitochondrial permeability transition pore in Alzheimer’s disease: cyclophilin D and amyloid beta. Biochim Biophys Acta 1802:198–204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dube H, Selwood D, Malouitre S, Capano M, Simone MI, Crompton M (2012) A mitochondrial-targeted cyclosporin A with high binding affinity for cyclophilin D yields improved cytoprotection of cardiomyocytes. Biochem J 441:901–907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenberg-Lerner A, Kimchi A (2007) DAP kinase regulates JNK signaling by binding and activating protein kinase D under oxidative stress. Cell Death Differ 14:1908–1915

    CAS  PubMed  Google Scholar 

  • Elrod JW, Wong R, Mishra S, Vagnozzi RJ, Sakthievel B, Goonasekera SA, Karch J, Gabel S, Farber J, Force T, Brown JH, Murphy E, Molkentin JD (2010) Cyclophilin D controls mitochondrial pore-dependent Ca(2+) exchange, metabolic flexibility, and propensity for heart failure in mice. J Clin Invest 120:3680–3687

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felipe A, Bielanska J, Comes N, Vallejo A, Roig S, Ramón Y, Cajal S, Condom E, Hernández-Losa J, Ferreres JC (2012) Targeting the voltage-dependent K(+) channels Kv1.3 and Kv1.5 as tumor biomarkers for cancer detection and prevention. Curr Med Chem 19:661–674

    CAS  PubMed  Google Scholar 

  • Fiaschi T, Chiarugi P (2012) Oxidative stress, tumor microenvironment, and metabolic reprogramming: a diabolic liaison. Int J Cell Biol 2012:762825

    PubMed Central  PubMed  Google Scholar 

  • Flescher E (2005) Jasmonates–a new family of anti-cancer agents. Anticancer Drugs 16:911–916

    CAS  PubMed  Google Scholar 

  • Flescher E (2007) Jasmonates in cancer therapy. Cancer Lett 245:1–10

    CAS  PubMed  Google Scholar 

  • Flierl A, Jackson C, Cottrell B, Murdock D, Seibel P, Wallace DC (2003) Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol Ther 7:550–557

    CAS  PubMed  Google Scholar 

  • Fontaine E, Bernardi P (1999) Progress on the mitochondrial permeability transition pore: regulation by complex I and ubiquinone analogs. J Bioenerg Biomembr 31:335–345

    CAS  PubMed  Google Scholar 

  • Forte M, Bernardi P (2005) Genetic dissection of the permeability transition pore. J Bioenerg Biomembr 37:121–128

    CAS  PubMed  Google Scholar 

  • Fournier N, Ducet G, Crevat A (1987) Action of cyclosporine on mitochondrial calcium fluxes. J Bioenerg Biomembr 19:297–303

    CAS  PubMed  Google Scholar 

  • Friberg H, Wieloch T (2002) Mitochondrial permeability transition in acute neurodegeneration. Biochimie 84:241–250

    CAS  PubMed  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464

    CAS  PubMed  Google Scholar 

  • Funakoshi T, Aki T, Nakayama H, Watanuki Y, Imori S, Uemura K (2011) Reactive oxygen species-independent rapid initiation of mitochondrial apoptotic pathway by chelerythrine. Toxicol In Vitro 25:1581–1587

    CAS  PubMed  Google Scholar 

  • Furuno T, Kanno T, Arita K, Asami M, Utsumi T, Doi Y, Inoue M, Utsumi K (2001) Roles of long chain fatty acids and carnitine in mitochondrial membrane permeability transition. Biochem Pharmacol 62:1037–1046

    CAS  PubMed  Google Scholar 

  • Gall JM, Wong V, Pimental DR, Havasi A, Wang Z, Pastorino JG, Bonegio RG, Schwartz JH, Borkan SC (2011) Hexokinase regulates Bax-mediated mitochondrial membrane injury following ischemic stress. Kidney Int 79:1207–1216

    CAS  PubMed Central  PubMed  Google Scholar 

  • Galluzzi L, Kepp O, Tajeddine N, Kroemer G (2008) Disruption of the hexokinase-VDAC complex for tumor therapy. Oncogene 27:4633–4635

    CAS  PubMed  Google Scholar 

  • Garcia-Dorado D, Ruiz-Meana M, Inserte J, Rodriguez-Sinovas A, Piper HM (2012) Calcium-mediated cell death during myocardial reperfusion. Cardiovasc Res 94:168–180

    CAS  PubMed  Google Scholar 

  • Garlid KD, Costa AD, Quinlan CL, Pierre SV, Dos Santos P (2009) Cardioprotective signaling to mitochondria. J Mol Cell Cardiol 46:858–866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gazula VR, Strumbos JG, Mei X, Chen H, Rahner C, Kaczmarek LK (2010) Localization of Kv1.3 channels in presynaptic terminals of brainstem auditory neurons. J Comp Neurol 518:3205–3220

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geula S, Naveed H, Liang J, Shoshan-Barmatz V (2012) Structure-based analysis of VDAC1 protein: defining oligomer contact sites. J Biol Chem 287:2179–2190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ghibelli L, Diederich M (2010) Multistep and multitask Bax activation. Mitochondrion 10:604–613

    CAS  PubMed  Google Scholar 

  • Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358:147–155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giorgio V, Bisetto E, Soriano ME, Dabbeni-Sala F, Basso E, Petronilli V, Forte MA, Bernardi P, Lippe G (2009) Cyclophilin D modulates mitochondrial F0F1-ATP synthase by interacting with the lateral stalk of the complex. J Biol Chem 284:33982–33988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giorgio V, Soriano ME, Basso E, Bisetto E, Lippe G, Forte MA, Bernardi P (2010) Cyclophilin D in mitochondrial pathophysiology. Biochim Biophys Acta 1797:1113–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabó I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gogvadze V (2011) Targeting mitochondria in fighting cancer. Curr Pharm Des 17:4034–4046

    CAS  PubMed  Google Scholar 

  • Gokul S, Patil V, Jailkhani R, Hallikeri K, Kattappagari K (2010) Oxidant-antioxidant status in blood and tumor tissue of oral squamous cell carcinoma patients. Oral Dis 16:29–33

    CAS  PubMed  Google Scholar 

  • Gomez L, Thibault H, Gharib A, Dumont JM, Vuagniaux G, Scalfaro P, Derumeaux G, Ovize M (2007) Inhibition of mitochondrial permeability transition improves functional recovery and reduces mortality following acute myocardial infarction in mice. Am J Physiol Heart Circ Physiol 293:H1654–H1661

    CAS  PubMed  Google Scholar 

  • Gottlieb RA, Gustafsson AB (2011) Mitochondrial turnover in the heart. Biochim Biophys Acta 1813:1295–1301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gottlieb RA, Mentzer RM Jr, Linton PJ (2011) Impaired mitophagy at the heart of injury. Autophagy 7:1573–1574

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gouriou Y, Demaurex N, Bijlenga P, De Marchi U (2011) Mitochondrial calcium handling during ischemia-induced cell death in neurons. Biochimie 93:2060–2067

    CAS  PubMed  Google Scholar 

  • Griffiths EJ (2012) Mitochondria and heart disease. Adv Exp Med Biol 942:249–267

    CAS  PubMed  Google Scholar 

  • Grills C, Jithesh PV, Blayney J, Zhang SD, Fennell DA (2011) Gene expression meta-analysis identifies VDAC1 as a predictor of poor outcome in early stage non-small cell lung cancer. PLoS One 6:e14635

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grimm S, Brdiczka D (2007) The permeability transition pore in cell death. Apoptosis 12:841–855

    CAS  PubMed  Google Scholar 

  • Groeger G, Quiney C, Cotter TG (2009) Hydrogen peroxide as a cell-survival signaling molecule. Antioxid Redox Signal 11:2655–2671

    CAS  PubMed  Google Scholar 

  • Grumati P, Coletto L, Sabatelli P, Cescon M, Angelin A, Bertaggia E, Blaauw B, Urciuolo A, Tiepolo T, Merlini L, Maraldi NM, Bernardi P, Sandri M, Bonaldo P (2010) Autophagy is defective in collagen VI muscular dystrophies, and its reactivation rescues myofiber degeneration. Nat Med 16:1313–1320

    CAS  PubMed  Google Scholar 

  • Gulbins E, Sassi N, Grassmè H, Zoratti M, Szabò I (2010) Role of Kv1.3 mitochondrial potassium channel in apoptotic signalling in lymphocytes. Biochim Biophys Acta 1797:1251–1259

    CAS  PubMed  Google Scholar 

  • Günther S, Ruhe C, Derikito MG, Böse G, Sauer H, Wartenberg M (2007) Polyphenols prevent cell shedding from mouse mammary cancer spheroids and inhibit cancer cell invasion in confrontation cultures derived from embryonic stem cells. Cancer Lett 250:25–35

    PubMed  Google Scholar 

  • Gutman GA, Chandy KG, Adelman JP, Aiyar J, Bayliss DA, Clapham DE, Covarriubias M, Desir GV, Furuichi K, Ganetzky B, Garcia ML, Grissmer S, Jan LY, Karschin A, Kim D, Kuperschmidt S, Kurachi Y, Lazdunski M, Lesage F, Lester HA, McKinnon D, Nichols CG, O'Kelly I, Robbins J, Robertson GA, Rudy B, Sanguinetti M, Seino S, Stuehmer W, Tamkun MM, Vandenberg CA, Wei A, Wulff H, Wymore RS, International Union of Pharmacology (2003) International Union of Pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol Rev 55:583–586

    CAS  PubMed  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    CAS  PubMed  Google Scholar 

  • Hail N Jr, Lotan R (2009) Cancer chemoprevention and mitochondria: targeting apoptosis in transformed cells via the disruption of mitochondrial bioenergetics/redox state. Mol Nutr Food Res 53:49–67

    CAS  PubMed  Google Scholar 

  • Hajnóczky G, Csordás G, Yi M (2002) Old players in a new role: mitochondria-associated membranes, VDAC, and ryanodine receptors as contributors to calcium signal propagation from endoplasmic reticulum to the mitochondria. Cell Calcium 32:363–377

    PubMed  Google Scholar 

  • Halestrap AP (2009) What is the mitochondrial permeability transition pore? J Mol Cell Cardiol 46:821–831

    CAS  PubMed  Google Scholar 

  • Halestrap AP (2010) A pore way to die: the role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38:841–860

    CAS  PubMed  Google Scholar 

  • Halestrap AP, Brenner C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525

    CAS  PubMed  Google Scholar 

  • Halestrap AP, Pasdois P (2009) The role of the mitochondrial permeability transition pore in heart disease. Biochim Biophys Acta 1787:1402–1415

    CAS  PubMed  Google Scholar 

  • Halestrap AP, Connern CP, Griffiths EJ, Kerr PM (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174:167–172

    CAS  PubMed  Google Scholar 

  • Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166

    CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Javadov SA (2004) Mitochondrial permeability transition pore opening during myocardial reperfusion–a target for cardioprotection. Cardiovasc Res 61:372–385

    CAS  PubMed  Google Scholar 

  • Halestrap AP, Clarke SJ, Khaliulin I (2007) The role of mitochondria in protection of the heart by preconditioning. Biochim Biophys Acta 1767:1007–1031

    CAS  PubMed Central  PubMed  Google Scholar 

  • Halliwell B (2008) Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys 476:107–112

    CAS  PubMed  Google Scholar 

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    CAS  PubMed  Google Scholar 

  • Han W, Li L, Qiu S, Lu Q, Pan Q, Gu Y, Luo J, Hu X (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649

    CAS  PubMed  Google Scholar 

  • Han W, Xie J, Li L, Liu Z, Hu X (2009) Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis. Apoptosis 14:674–686

    CAS  PubMed  Google Scholar 

  • Haridas V, Li X, Mizumachi T, Higuchi M, Lemeshko VV, Colombini M, Gutterman JU (2007) Avicins, a novel plant-derived metabolite lowers energy metabolism in tumor cells by targeting the outer mitochondrial membrane. Mitochondrion 7:234–240

    CAS  PubMed  Google Scholar 

  • Hartman ML, Czyz M (2012) Pro-apoptotic activity of BH3-only proteins and BH3 mimetics: from theory to potential cancer therapy. Anticancer Agents Med Chem 12:966–981

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Duchen MR, Yellon DM (2003) Inhibiting mitochondrial permeability transition pore opening at reperfusion protects against ischaemia-reperfusion injury. Cardiovasc Res 60:617–625

    CAS  PubMed  Google Scholar 

  • Hausenloy D, Wynne A, Duchen M, Yellon D (2004) Transient mitochondrial permeability transition pore opening mediates preconditioning-induced protection. Circulation 109:1714–1717

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Ong SB, Yellon DM (2009) The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol 104:189–202

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Lim SY, Ong SG, Davidson SM, Yellon DM (2010) Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Cardiovasc Res 88:67–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hausenloy DJ, Lecour S, Yellon DM (2011) Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal 14:893–907

    CAS  PubMed  Google Scholar 

  • Hausenloy DJ, Boston-Griffiths EA, Yellon DM (2012) Cyclosporin A and cardioprotection: from investigative tool to therapeutic agent. Br J Pharmacol 165:1235–1245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467

    CAS  PubMed  Google Scholar 

  • Haworth RA, Hunter DR (1980) Allosteric inhibition of the Ca2+-activated hydrophilic channel of the mitochondrial inner membrane by nucleotides. J Membr Biol 54:231–236

    CAS  PubMed  Google Scholar 

  • Haworth RA, Hunter DR (2000) Control of the mitochondrial permeability transition pore by high-affinity ADP binding at the ADP/ATP translocase in permeabilized mitochondria. J Bioenerg Biomembr 32:91–96

    CAS  PubMed  Google Scholar 

  • Heerdt BG, Houston MA, Augenlicht LH (2005) The intrinsic mitochondrial membrane potential of colonic carcinoma cells is linked to the probability of tumor progression. Cancer Res 65:9861–9867

    CAS  PubMed  Google Scholar 

  • Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hinsch KD, De Pinto V, Aires VA, Schneider X, Messina A, Hinsch E (2004) Voltage-dependent anion-selective channels VDAC2 and VDAC3 are abundant proteins in bovine outer dense fibers, a cytoskeletal component of the sperm flagellum. J Biol Chem 279:15281–15288

    CAS  PubMed  Google Scholar 

  • Hodge T, Colombini M (1997) Regulation of metabolite flux through voltage-gating of VDAC channels. J Membr Biol 157:271–279

    CAS  PubMed  Google Scholar 

  • Horton KL, Pereira MP, Stewart KM, Fonseca SB, Kelley SO (2012) Tuning the activity of mitochondria-penetrating peptides for delivery or disruption. Chembiochem 13:476–485

    CAS  PubMed  Google Scholar 

  • Hoye AT, Davoren JE, Wipf P, Fink MP, Kagan VE (2008) Targeting mitochondria. Acc Chem Res 41:87–97

    CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979a) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459

    CAS  PubMed  Google Scholar 

  • Hunter DR, Haworth RA (1979b) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195:468–477

    CAS  PubMed  Google Scholar 

  • Hyoudou K, Nishikawa M, Kobayashi Y, Ikemura M, Yamashita F, Hashida M (2008) SOD derivatives prevent metastatic tumor growth aggravated by tumor removal. Clin Exp Metastasis 25:531–536

    PubMed  Google Scholar 

  • Hyoudou K, Nishikawa M, Ikemura M, Kobayashi Y, Mendelsohn A, Miyazaki N, Tabata Y, Yamashita F, Hashida M (2009) Prevention of pulmonary metastasis from subcutaneous tumors by binary system based sustained delivery of catalase. J Control Release 137:110–115

    CAS  PubMed  Google Scholar 

  • Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J (2008) ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320:661–664

    CAS  PubMed  Google Scholar 

  • Israelson A, Abu-Hamad S, Zaid H, Nahon E, Shoshan-Barmatz V (2007) Localization of the voltage-dependent anion channel-1 Ca2+-binding sites. Cell Calcium 41:235–244

    CAS  PubMed  Google Scholar 

  • Jain MV, Paczulla AM, Klonisch T, Dimgba FN, Rao SB, Roberg K, Schweizer F, Lengerke C, Davoodpour P, Palicharla VR, Maddika S, Los M (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J Cell Mol Med 17(1):12–29

    CAS  PubMed  Google Scholar 

  • Jamison JM, Gilloteaux J, Taper HS, Calderon PB, Summers JL (2002) Autoschizis: a novel cell death. Biochem Pharmacol 63:1773–1783

    CAS  PubMed  Google Scholar 

  • Javadov S, Karmazyn M (2007) Mitochondrial permeability transition pore opening as an endpoint to initiate cell death and as a putative target for cardioprotection. Cell Physiol Biochem 20:1–22

    CAS  PubMed  Google Scholar 

  • Javadov SA, Clarke S, Das M, Griffiths EJ, Lim KH, Halestrap AP (2003) Ischaemic preconditioning inhibits opening of mitochondrial permeability transition pores in the reperfused rat heart. J Physiol 549:513–524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Javadov S, Karmazyn M, Escobales N (2009) Mitochondrial permeability transition pore opening as a promising therapeutic target in cardiac diseases. J Pharmacol Exp Ther 330:670–678

    CAS  PubMed  Google Scholar 

  • Javadov S, Hunter JC, Barreto-Torres G, Parodi-Rullan R (2011) Targeting the mitochondrial permeability transition: cardiac ischemia-reperfusion versus carcinogenesis. Cell Physiol Biochem 27:179–190

    CAS  PubMed  Google Scholar 

  • Jezek P, Plecitá-Hlavatá L, Smolková K, Rossignol R (2010) Distinctions and similarities of cell bioenergetics and the role of mitochondria in hypoxia, cancer, and embryonic development. Int J Biochem Cell Biol 42:604–622

    CAS  PubMed  Google Scholar 

  • Jiang S, Zu Y, Wang Z, Zhang Y, Fu Y (2011) Involvement of mitochondrial permeability transition pore opening in 7-xylosyl-10-deacetylpaclitaxel-induced apoptosis. Planta Med 77:1005–1012

    CAS  PubMed  Google Scholar 

  • Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, Luczak ED, Hall DD, Fink BD, Chen B, Yang J, Moore SA, Scholz TD, Strack S, Mohler PJ, Sivitz WI, Song LS, Anderson ME (2012) CaMKII determines mitochondrial stress responses in heart. Nature 491:269–273

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones S, Martel C, Belzacq-Casagrande AS, Brenner C, Howl J (2008) Mitoparan and target-selective chimeric analogues: membrane translocation and intracellular redistribution induces mitochondrial apoptosis. Biochim Biophys Acta 1783:849–863

    CAS  PubMed  Google Scholar 

  • Jordán J, Galindo MF, Tornero D, González-García C, Ceña V (2004) Bcl-x L blocks mitochondrial multiple conductance channel activation and inhibits 6-OHDA-induced death in SH-SY5Y cells. J Neurochem 89:124–133

    PubMed  Google Scholar 

  • Juhaszova M, Wang S, Zorov DB, Nuss HB, Gleichmann M, Mattson MP, Sollott SJ (2008) The identity and regulation of the mitochondrial permeability transition pore: where the known meets the unknown. Ann N Y Acad Sci 1123:197–212

    CAS  PubMed  Google Scholar 

  • Ka H, Park HJ, Jung HJ, Choi JW, Cho KS, Ha J, Lee KT (2003) Cinnamaldehyde induces apoptosis by ROS-mediated mitochondrial permeability transition in human promyelocytic leukemia HL-60 cells. Cancer Lett 196:143–152

    CAS  PubMed  Google Scholar 

  • Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kang BH (2012) TRAP1 regulation of mitochondrial life or death decision in cancer cells and mitochondria-targeted TRAP1 inhibitors. BMB Rep 45:1–6

    CAS  PubMed  Google Scholar 

  • Katoh I, Tomimori Y, Ikawa Y, Kurata S (2004) Dimerization and processing of procaspase-9 by redox stress in mitochondria. J Biol Chem 279:15515–15523

    CAS  PubMed  Google Scholar 

  • Kelley SO, Stewart KM, Mourtada R (2011) Development of novel peptides for mitochondrial drug delivery: amino acids featuring delocalized lipophilic cations. Pharm Res 28:2808–2819

    CAS  PubMed  Google Scholar 

  • Kerner J, Lee K, Tandler B, Hoppel CL (2012) VDAC proteomics: post-translation modifications. Biochim Biophys Acta 1818:1520–1525

    CAS  PubMed  Google Scholar 

  • Kim YS, Schwabe RF, Qian T, Lemasters JJ, Brenner DA (2002) TRAIL-mediated apoptosis requires NF-kappaB inhibition and the mitochondrial permeability transition in human hepatoma cells. Hepatology 36:1498–1508

    CAS  PubMed  Google Scholar 

  • Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim JS, Wang JH, Lemasters JJ (2012) Mitochondrial permeability transition in rat hepatocytes after anoxia/reoxygenation: role of Ca2+-dependent mitochondrial formation of reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 302:G723–G731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kinnally KW, Peixoto PM, Ryu SY, Dejean LM (2011) Is mPTP the gatekeeper for necrosis, apoptosis, or both? Biochim Biophys Acta 1813:616–622

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein D, Ribeiro MM, Mendoza V, Jayaraman S, Kenyon NS, Pileggi A, Molano RD, Inverardi L, Ricordi C, Pastori RL (2004) Delivery of Bcl-XL or its BH4 domain by protein transduction inhibits apoptosis in human islets. Biochem Biophys Res Commun 323:473–478

    CAS  PubMed  Google Scholar 

  • Ko YH, Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, Hullihen J, Pedersen PL (2004) Advanced cancers: eradication in all cases using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 324:269–275

    CAS  PubMed  Google Scholar 

  • Ko YH, Verhoeven HA, Lee MJ, Corbin DJ, Vogl TJ, Pedersen PL (2012) A translational study “case report” on the small molecule “energy blocker” 3-bromopyruvate (3BP) as a potent anticancer agent: from bench side to bedside. J Bioenerg Biomembr 44:163–170

    CAS  PubMed  Google Scholar 

  • Kobliakov VA (2010) Mechanisms of tumor promotion by reactive oxygen species. Biochemistry (Mosc) 75:675–685

    CAS  Google Scholar 

  • Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolevzon N, Kuflik U, Shmuel M, Benhamron S, Ringel I, Yavin E (2011) Multiple triphenylphosphonium cations as a platform for the delivery of a pro-apoptotic peptide. Pharm Res 28:2780–2789

    CAS  PubMed  Google Scholar 

  • Kongara S, Karantza V (2012) The interplay between autophagy and ROS in tumorigenesis. Front Oncol 2:171

    PubMed Central  PubMed  Google Scholar 

  • Korde AS, Yadav VR, Zheng YM, Wang YX (2011) Primary role of mitochondrial Rieske iron-sulfur protein in hypoxic ROS production in pulmonary artery myocytes. Free Radic Biol Med 50:945–952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Koren I, Raviv Z, Shoshan-Barmatz V (2010) Downregulation of voltage-dependent anion channel-1 expression by RNA interference prevents cancer cell growth in vivo. Cancer Biol Ther 9:1046–1052

    CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Castilho RF, Vercesi AE (2001) Mitochondrial permeability transition and oxidative stress. FEBS Lett 495:12–15

    CAS  PubMed  Google Scholar 

  • Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P (2006) Properties of the permeability transition in VDAC1−/− mitochondria. Biochim Biophys Acta 1757:590–595

    CAS  PubMed  Google Scholar 

  • Krestinina OV, Grachev DE, Odinokova IV, Reiser G, Evtodienko YV, Azarashvili TS (2009) Effect of peripheral benzodiazepine receptor (PBR/TSPO) ligands on opening of Ca2+-induced pore and phosphorylation of 3.5-kDa polypeptide in rat brain mitochondria. Biochemistry (Moscow) 74:421–429

    CAS  Google Scholar 

  • Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kumarswamy R, Chandna S (2009) Putative partners in Bax mediated cytochrome-c release: ANT, CypD, VDAC or none of them? Mitochondrion 9:1–8

    CAS  PubMed  Google Scholar 

  • Kundu JK, Surh YJ (2008) Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett 269:243–261

    CAS  PubMed  Google Scholar 

  • Kwon WS, Park YJ, Mohamed ES, Pang MG (2013) Voltage-dependent anion channels are a key factor of male fertility. Fertil Steril 99(2):354–361

    CAS  PubMed  Google Scholar 

  • Landete JM (2012) Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr 52:936–948

    CAS  PubMed  Google Scholar 

  • Lang F, Uhlemann AC, Lepple-Wienhues A, Szabo I, Siemen D, Nilius B, Gulbins E (1999) Cell volume regulatory mechanisms in apoptotic cell death. Herz 24:232–235

    CAS  PubMed  Google Scholar 

  • Lang F, Gulbins E, Szabo I, Lepple-Wienhues A, Huber SM, Duranton C, Lang KS, Lang PA, Wieder T (2004) Cell volume and the regulation of apoptotic cell death. J Mol Recognit 17:473–480

    CAS  PubMed  Google Scholar 

  • Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed J, Kroemer G (1999) Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 249:413–421

    CAS  PubMed  Google Scholar 

  • Le Quoc K, Le Quoc D (1988) Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 265:249–257

    PubMed  Google Scholar 

  • Leanza L, Henry B, Sassi N, Zoratti M, Chandy KG, Gulbins E, Szabò I (2012a) Inhibitors of mitochondrial Kv1.3 channels induce Bax/Bak-independent death of cancer cells. EMBO Mol Med 4:577–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leanza L, Zoratti M, Gulbins E, Szabò I (2012b) Induction of apoptosis in macrophages via Kv1.3 and Kv1.5 potassium channels. Curr Med Chem 19:5394–5404

    CAS  PubMed  Google Scholar 

  • Leanza L, Trentin L, Becker KA, Frezzato F, Zoratti M, Semenzato G, Gulbins E, Szabo I (2013) Clofazimine, Psora-4 and PAP-1, inhibitors of the potassium channel Kv1.3, as a new and selective therapeutic strategy in chronic lymphocytic leukemia. Leukemia 27:1782–1785

    CAS  PubMed  Google Scholar 

  • Leber B, Geng F, Kale J, Andrews DW (2010) Drugs targeting Bcl-2 family members as an emerging strategy in cancer. Expert Rev Mol Med 12:e28

    PubMed  Google Scholar 

  • Lecoeur H, Borgne-Sanchez A, Chaloin O, El-Khoury R, Brabant M, Langonné A, Porceddu M, Brière JJ, Buron N, Rebouillat D, Péchoux C, Deniaud A, Brenner C, Briand JP, Muller S, Rustin P, Jacotot E (2012) HIV-1 Tat protein directly induces mitochondrial membrane permeabilization and inactivates cytochrome c oxidase. Cell Death Dis 3:e282

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SY, MacKinnon R (2004) A membrane-access mechanism of ion channel inhibition by voltage sensor toxins from spider venom. Nature 430:232–235

    CAS  PubMed  Google Scholar 

  • Lee EL, Hasegawa Y, Shimizu T, Okada Y (2008) IK1 channel activity contributes to cisplatin sensitivity of human epidermoid cancer cells. Am J Physiol Cell Physiol 294:C1398–C1406

    CAS  PubMed  Google Scholar 

  • Lee J, Boo JH, Ryu H (2009) The failure of mitochondria leads to neurodegeneration: do mitochondria need a jump start? Adv Drug Deliv Rev 30:1316–1323

    Google Scholar 

  • Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: a common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177–196

    CAS  PubMed  Google Scholar 

  • Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009) Mitochondrial calcium and the permeability transition in cell death. Biochim Biophys Acta 1787:1395–1401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lena A, Rechichi M, Salvetti A, Bartoli B, Vecchio D, Scarcelli V, Amoroso R, Benvenuti L, Gagliardi R, Gremigni V, Rossi L (2009) Drugs targeting the mitochondrial pore act as cytotoxic and cytostatic agents in temozolomide-resistant glioma cells. J Transl Med 7:13

    PubMed Central  PubMed  Google Scholar 

  • Leung AW, Halestrap AP (2008) Recent progress in elucidating the molecular mechanism of the mitochondrial permeability transition pore. Biochim Biophys Acta 1777:946–952

    CAS  PubMed  Google Scholar 

  • Li L, Han W, Gu Y, Qiu S, Lu Q, Jin J, Luo J, Hu X (2007) Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res 67:4894–4903

    CAS  PubMed  Google Scholar 

  • Li T, Brustovetsky T, Antonsson B, Brustovetsky N (2008) Oligomeric BAX induces mitochondrial permeability transition and complete cytochrome c release without oxidative stress. Biochim Biophys Acta 1777:1409–1421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li T, Brustovetsky T, Antonsson B, Brustovetsky N (2010) Dissimilar mechanisms of cytochrome c release induced by octyl glucoside-activated BAX and by BAX activated with truncated BID. Biochim Biophys Acta 1797:52–62

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li B, Chauvin C, De Paulis D, De Oliveira F, Gharib A, Vial G, Lablanche S, Leverve X, Bernardi P, Ovize M, Fontaine E (2012) Inhibition of complex I regulates the mitochondrial permeability transition through a phosphate-sensitive inhibitory site masked by cyclophilin D. Biochim Biophys Acta 1817:1628–1634

    CAS  PubMed  Google Scholar 

  • Liem DA, Honda HM, Zhang J, Woo D, Ping P (2007) Past and present course of cardioprotection against ischemia-reperfusion injury. J Appl Physiol 103:2129–2136

    CAS  PubMed  Google Scholar 

  • López-Lázaro M (2010) A new view of carcinogenesis and an alternative approach to cancer therapy. Mol Med 16:144–153

    PubMed Central  PubMed  Google Scholar 

  • Lustgarten MS, Bhattacharya A, Muller FL, Jang YC, Shimizu T, Shirasawa T, Richardson A, Van Remmen H (2012) Complex I generated, mitochondrial matrix-directed superoxide is released from the mitochondria through voltage dependent anion channels. Biochem Biophys Res Commun 422:515–521

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lyamzaev KG, Pustovidko AV, Simonyan RA, Rokitskaya TI, Domnina LV, Ivanova OY, Severina II, Sumbatyan NV, Korshunova GA, Tashlitsky VN, Roginsky VA, Antonenko YN, Skulachev MV, Chernyak BV, Skulachev VP (2011) Novel mitochondria-targeted antioxidants: plastoquinone conjugated with cationic plant alkaloids berberine and palmatine. Pharm Res 28:2883–2895

    CAS  PubMed  Google Scholar 

  • Lyrawati D, Trounson A, Cram D (2011) Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharm Res 28:2848–2862

    CAS  PubMed  Google Scholar 

  • Machida K, Ohta Y, Osada H (2006) Suppression of apoptosis by cyclophilin D via stabilization of hexokinase II mitochondrial binding in cancer cells. J Biol Chem 281:14314–14320

    CAS  PubMed  Google Scholar 

  • Maciel EN, Vercesi AE, Castilho RF (2001) Oxidative stress in Ca2+-induced membrane permeability transition in brain mitochondria. J Neurochem 79:1237–1245

    CAS  PubMed  Google Scholar 

  • Mader A, Abu-Hamad S, Arbel N, Gutiérrez-Aguilar M, Shoshan-Barmatz V (2010) Dominant-negative VDAC1 mutants reveal oligomeric VDAC1 to be the active unit in mitochondria-mediated apoptosis. Biochem J 429:147–155

    CAS  PubMed  Google Scholar 

  • Malia TJ, Wagner G (2007) NMR structural investigation of the mitochondrial outer membrane protein VDAC and its interaction with antiapoptotic Bcl-xL. Biochemistry 46:514–525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Malouitre S, Dube H, Selwood D, Crompton M (2009) Mitochondrial targeting of cyclosporin A enables selective inhibition of cyclophilin-D and enhanced cytoprotection after glucose and oxygen deprivation. Biochem J 425:137–148

    PubMed Central  PubMed  Google Scholar 

  • Marchi S, Lupini L, Patergnani S, Rimessi A, Missiroli S, Bonora M, Bononi A, Corrà F, Giorgi C, De Marchi E, Poletti F, Gafà R, Lanza G, Negrini M, Rizzuto R, Pinton P (2013) Downregulation of the mitochondrial calcium uniporter by cancer-related miR-25. Curr Biol 23:58–63

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marrache S, Dhar S (2012) Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc Natl Acad Sci U S A 109:16288–16293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin LJ (2010a) Mitochondrial pathobiology in Parkinson’s disease and amyotrophic lateral sclerosis. J Alzheimers Dis 20(Suppl 2):S335–S356

    PubMed  Google Scholar 

  • Martin LJ (2010b) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals (Basel) 3:839–915

    CAS  Google Scholar 

  • Martin LJ (2010c) The mitochondrial permeability transition pore: a molecular target for amyotrophic lateral sclerosis therapy. Biochim Biophys Acta 1802:186–197

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin LJ (2011) Mitochondrial pathobiology in ALS. J Bioenerg Biomembr 43:569–579

    CAS  PubMed  Google Scholar 

  • Martin LJ (2012) Biology of mitochondria in neurodegenerative diseases. Prog Mol Biol Transl Sci 107:355–415

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez-Caballero S, Dejean LM, Kinnally MS, Oh KJ, Mannella CA, Kinnally KW (2009) Assembly of the mitochondrial apoptosis-induced channel, MAC. J Biol Chem 284:12235–12245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinucci S, Szabò I, Tombola F, Zoratti M (2000) Ca2+-reversible inhibition of the mitochondrial megachannel by ubiquinone analogues. FEBS Lett 480:89–94

    CAS  PubMed  Google Scholar 

  • Matassa DS, Amoroso MR, Maddalena F, Landriscina M, Esposito F (2012) New insights into TRAP1 pathway. Am J Cancer Res 2:235–248

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mathupala SP, Pedersen PL (2010) Voltage dependent anion channel-1 (VDAC-1) as an anti-cancer target. Cancer Biol Ther 9:1053–1056

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mattarei A, Biasutto L, Marotta E, De Marchi U, Sassi N, Garbisa S, Zoratti M, Paradisi C (2008) A mitochondriotropic derivative of quercetin: a strategy to increase the effectiveness of polyphenols. Chembiochem 9:2633–2642

    CAS  PubMed  Google Scholar 

  • McCloskey C, Jones S, Amisten S, Snowden RT, Kaczmarek LK, Erlinge D, Goodall AH, Forsythe ID, Mahaut-Smith MP (2010) Kv1.3 is the exclusive voltage-gated K+ channel of platelets and megakaryocytes: roles in membrane potential, Ca2+ signalling and platelet count. J Physiol 588:1399–1406

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta 1818:1444–1450

    CAS  PubMed Central  PubMed  Google Scholar 

  • Menzel VA, Cassará MC, Benz R, de Pinto V, Messina A, Cunsolo V, Saletti R, Hinsch KD, Hinsch E (2009) Molecular and functional characterization of VDAC2 purified from mammal spermatozoa. Biosci Rep 29:351–362

    CAS  PubMed  Google Scholar 

  • Merlini L, Angelin A, Tiepolo T, Braghetta P, Sabatelli P, Zamparelli A, Ferlini A, Maraldi NM, Bonaldo P, Bernardi P (2008) Cyclosporin A corrects mitochondrial dysfunction and muscle apoptosis in patients with collagen VI myopathies. Proc Natl Acad Sci U S A 105:5225–5229

    CAS  PubMed Central  PubMed  Google Scholar 

  • Merlini L, Sabatelli P, Armaroli A, Gnudi S, Angelin A, Grumati P, Michelini ME, Franchella A, Gualandi F, Bertini E, Maraldi NM, Ferlini A, Bonaldo P, Bernardi P (2011) Cyclosporine A in Ullrich congenital muscular dystrophy: long-term results. Oxid Med Cell Longev 2011:139194

    PubMed Central  PubMed  Google Scholar 

  • Messina A, Reina S, Guarino F, De Pinto V (2012) VDAC isoforms in mammals. Biochim Biophys Acta 1818:1466–1476

    CAS  PubMed  Google Scholar 

  • Michie AM, McCaig AM, Nakagawa R, Vukovic M (2010) Death-associated protein kinase (DAPK) and signal transduction: regulation in cancer. FEBS J 277:74–80

    CAS  PubMed  Google Scholar 

  • Mileshina D, Ibrahim N, Boesch P, Lightowlers RN, Dietrich A, Weber-Lotfi F (2011) Mitochondrial transfection for studying organellar DNA repair, genome maintenance and aging. Mech Ageing Dev 132:412–423

    CAS  PubMed  Google Scholar 

  • Min CK, Yeom DR, Lee KE, Kwon HK, Kang M, Kim YS, Park ZY, Jeon H, Kim do H (2012) Coupling of ryanodine receptor 2 and voltage-dependent anion channel 2 is essential for Ca2+ transfer from the sarcoplasmic reticulum to the mitochondria in the heart. Biochem J 447:371–379

    CAS  PubMed  Google Scholar 

  • Mirzabekov T, Ballarin C, Nicolini M, Zatta P, Sorgato MC (1993) Reconstitution of the native mitochondrial outer membrane in planar bilayers. Comparison with the outer membrane in a patch pipette and effect of aluminum compounds. J Membr Biol 133:129–143

    CAS  PubMed  Google Scholar 

  • Miura T, Tanno M (2012) The mPTP and its regulatory proteins: final common targets of signalling pathways for protection against necrosis. Cardiovasc Res 94:181–189

    CAS  PubMed  Google Scholar 

  • Miura T, Tanno M, Sato T (2010) Mitochondrial kinase signalling pathways in myocardial protection from ischaemia/reperfusion-induced necrosis. Cardiovasc Res 88:7–15

    CAS  PubMed  Google Scholar 

  • Modica-Napolitano JS, Aprille JR (2001) Delocalized lipophilic cations selectively target the mitochondria of carcinoma cells. Adv Drug Deliv Rev 49:63–70

    CAS  PubMed  Google Scholar 

  • Morgan MJ, Liu ZG (2011) Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res 21:103–115

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morin D, Assaly R, Paradis S, Berdeaux A (2009) Inhibition of mitochondrial membrane permeability as a putative pharmacological target for cardioprotection. Curr Med Chem 16:4382–4398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morselli E, Galluzzi L, Kepp O, Mariño G, Michaud M, Vitale I, Maiuri MC, Kroemer G (2011) Oncosuppressive functions of autophagy. Antioxid Redox Signal 14:2251–2269

    CAS  PubMed  Google Scholar 

  • Murakami A, Ashida H, Terao J (2008) Multitargeted cancer prevention by quercetin. Cancer Lett 269:315–325

    CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MP, Smith RA (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656

    CAS  PubMed  Google Scholar 

  • Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy E, Steenbergen C (2011) What makes the mitochondria a killer? Can we condition them to be less destructive? Biochim Biophys Acta 1813:1302–1308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murrow L, Debnath J (2013) Autophagy as a stress-response and quality-control mechanism: implications for cell injury and human disease. Annu Rev Pathol 8:105–137

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658

    CAS  PubMed  Google Scholar 

  • Nakamura T, Akita H, Yamada Y, Hatakeyama H, Harashima H (2012) A multifunctional envelope-type nanodevice for use in nanomedicine: concept and applications. Acc Chem Res 45:1113–1121

    CAS  PubMed  Google Scholar 

  • Nakanishi H, Wu Z (2009) Microglia-aging: roles of microglial lysosome- and mitochondria-derived reactive oxygen species in brain aging. Behav Brain Res 201:1–7

    CAS  PubMed  Google Scholar 

  • Neuzil J, Weber T, Gellert N, Weber C (2001) Selective cancer cell killing by alpha-tocopheryl succinate. Br J Cancer 84:87–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neuzil J, Dong LF, Rohlena J, Truksa J, Ralph SJ (2013) Classification of mitocans, anti-cancer drugs acting on mitochondria. Mitochondrion 13(3):199–208

    CAS  PubMed  Google Scholar 

  • Norman KG, Canter JA, Shi M, Milne GL, Morrow JD, Sligh JE (2010) Cyclosporine A suppresses keratinocyte cell death through MPTP inhibition in a model for skin cancer in organ transplant recipients. Mitochondrion 10:94–101

    CAS  PubMed  Google Scholar 

  • Novgorodov SA, Gudz TI (1996) Permeability transition pore of the inner mitochondrial membrane can operate in two open states with different selectivities. J Bioenerg Biomembr 28:139–146

    CAS  PubMed  Google Scholar 

  • Nowikovsky K, Schweyen RJ, Bernardi P (2009) Pathophysiology of mitochondrial volume homeostasis: potassium transport and permeability transition. Biochim Biophys Acta 1787:345–350

    CAS  PubMed  Google Scholar 

  • Oberley TD, Oberley LW (1997) Antioxidant enzyme levels in cancer. Histol Histopathol 12:525–535

    CAS  PubMed  Google Scholar 

  • Odagiri K, Katoh H, Kawashima H, Tanaka T, Ohtani H, Saotome M, Urushida T, Satoh H, Hayashi H (2009) Local control of mitochondrial membrane potential, permeability transition pore and reactive oxygen species by calcium and calmodulin in rat ventricular myocytes. J Mol Cell Cardiol 46:989–997

    CAS  PubMed  Google Scholar 

  • Oerlemans MI, Koudstaal S, Chamuleau SA, de Kleijn DP, Doevendans PA, Sluijter JP (2013) Targeting cell death in the reperfused heart: pharmacological approaches for cardioprotection. Int J Cardiol 165:410–422

    PubMed  Google Scholar 

  • Ono M, Sawa Y, Ryugo M, Alechine AN, Shimizu S, Sugioka R, Tsujimoto Y, Matsuda H (2005) BH4 peptide derivative from Bcl-xL attenuates ischemia/reperfusion injury thorough anti-apoptotic mechanism in rat hearts. Eur J Cardiothorac Surg 27:117–1121

    PubMed  Google Scholar 

  • Oyanagi E, Yano H, Uchida M, Utsumi K, Sasaki J (2011) Protective action of L-carnitine on cardiac mitochondrial function and structure against fatty acid stress. Biochem Biophys Res Commun 412:61–67

    CAS  PubMed  Google Scholar 

  • Pagliaro P, Penna C (2011) Cardiac postconditioning. Antioxid Redox Signal 14:777–779

    CAS  PubMed  Google Scholar 

  • Pani G, Koch OR, Galeotti T (2009) The p53-p66shc-Manganese Superoxide Dismutase (MnSOD) network: a mitochondrial intrigue to generate reactive oxygen species. Int J Biochem Cell Biol 41:1002–1005

    CAS  PubMed  Google Scholar 

  • Panieri E, Gogvadze V, Norberg E, Venkatesh R, Orrenius S, Zhivotovsky B (2013) Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic Biol Med 57:176–187

    CAS  PubMed  Google Scholar 

  • Panyi G (2005) Biophysical and pharmacological aspects of K+ channels in T lymphocytes. Eur Biophys J 34:515–529

    PubMed  Google Scholar 

  • Papanicolaou KN, Phillippo MM, Walsh K (2012) Mitofusins and the mitochondrial permeability transition: the potential downside of mitochondrial fusion. Am J Physiol Heart Circ Physiol 303:H243–H255

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pastorino JG, Hoek JB (2008) Regulation of hexokinase binding to VDAC. J Bioenerg Biomembr 40:171–182

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pastorino JG, Simbula G, Yamamoto K, Glascott PA Jr, Rothman RJ, Farber JL (1996) The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem 271:29792–29798

    CAS  PubMed  Google Scholar 

  • Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618

    CAS  PubMed  Google Scholar 

  • Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65:10545–10554

    CAS  PubMed  Google Scholar 

  • Pathania D, Millard M, Neamati N (2009) Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism. Adv Drug Deliv Rev 61:1250–1275

    CAS  PubMed  Google Scholar 

  • Paul S, Sengupta S, Bandyopadhyay TK, Bhattacharyya A (2012) Stevioside induced ROS-mediated apoptosis through mitochondrial pathway in human breast cancer cell line MCF-7. Nutr Cancer 64:1087–1094

    CAS  PubMed  Google Scholar 

  • Pavlov E, Grigoriev SM, Dejean LM, Zweihorn CL, Mannella CA, Kinnally KW (2005a) The mitochondrial channel VDAC has a cation-selective open state. Biochim Biophys Acta 1710:96–102

    CAS  PubMed  Google Scholar 

  • Pavlov E, Zakharian E, Bladen C, Diao CT, Grimbly C, Reusch RN, French RJ (2005b) A large, voltage-dependent channel, isolated from mitochondria by water-free chloroform extraction. Biophys J 88:2614–2625

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pedersen PL (2012) 3-Bromopyruvate (3BP) a fast acting, promising, powerful, specific, and effective “small molecule” anti-cancer agent taken from labside to bedside: introduction to a special issue. J Bioenerg Biomembr 44:1–6

    CAS  PubMed  Google Scholar 

  • Pediaditakis P, Kim JS, He L, Zhang X, Graves LM, Lemasters JJ (2010) Inhibition of the mitochondrial permeability transition by protein kinase A in rat liver mitochondria and hepatocytes. Biochem J 431:411–421

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pelicano H, Lu W, Zhou Y, Zhang W, Chen Z, Hu Y, Huang P (2009) Mitochondrial dysfunction and reactive oxygen species imbalance promote breast cancer cell motility through a CXCL14-mediated mechanism. Cancer Res 69:2375–2383

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peng S, Blachly-Dyson E, Forte M, Colombini M (1992) Large scale rearrangement of protein domains is associated with voltage gating of the VDAC channel. Biophys J 62:123–131

    CAS  PubMed Central  PubMed  Google Scholar 

  • Penna C, Mancardi D, Raimondo S, Geuna S, Pagliaro P (2008) The paradigm of postconditioning to protect the heart. J Cell Mol Med 12:435–458

    CAS  PubMed  Google Scholar 

  • Penna C, Perrelli MG, Pagliaro P (2013) Mitochondrial pathways, permeability transition pore, and redox signaling in cardioprotection: therapeutic implications. Antioxid Redox Signal 18:556–599

    CAS  PubMed  Google Scholar 

  • Penzo D, Tagliapietra C, Colonna R, Petronilli V, Bernardi P (2002) Effects of fatty acids on mitochondria: implications for cell death. Biochim Biophys Acta 1555:160–165

    CAS  PubMed  Google Scholar 

  • Pereira GC, Branco AF, Matos JA, Pereira SL, Parke D, Perkins EL, Serafim TL, Sardão VA, Santos MS, Moreno AJ, Holy J, Oliveira PJ (2007) Mitochondrially targeted effects of berberine [Natural Yellow 18, 5,6-dihydro-9,10-dimethoxybenzo(g)-1,3-benzodioxolo(5,6-a) quinolizinium] on K1735-M2 mouse melanoma cells: comparison with direct effects on isolated mitochondrial fractions. J Pharmacol Exp Ther 323:636–649

    CAS  PubMed  Google Scholar 

  • Pereira CV, Machado NG, Oliveira PJ (2008) Mechanisms of berberine (natural yellow 18)-induced mitochondrial dysfunction: interaction with the adenine nucleotide translocator. Toxicol Sci 105:408–417

    CAS  PubMed  Google Scholar 

  • Pfeiffer DR, Gudz TI, Novgorodov SA, Erdahl WL (1995) The peptide mastoparan is a potent facilitator of the mitochondrial permeability transition. J Biol Chem 270:4923–4932

    CAS  PubMed  Google Scholar 

  • Pinton P, Rizzuto R (2008) p66Shc, oxidative stress and aging: importing a lifespan determinant into mitochondria. Cell Cycle 7:304–308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20:2690–2701

    CAS  PubMed Central  PubMed  Google Scholar 

  • Policastro L, Molinari B, Larcher F, Blanco P, Podhajcer OL, Costa CS, Rojas P, Durán H (2004) Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog 39:103–113

    CAS  PubMed  Google Scholar 

  • Pongs O, Schwarz JR (2010) Ancillary subunits associated with voltage-dependent K+ channels. Physiol Rev 90:755–796

    CAS  PubMed  Google Scholar 

  • Popp B, Court DA, Benz R, Neupert W, Lill R (1996) The role of the N and C termini of recombinant Neurospora mitochondrial porin in channel formation and voltage-dependent gating. J Biol Chem 271:13593–13599

    CAS  PubMed  Google Scholar 

  • Prime TA, Blaikie FH, Evans C, Nadtochiy SM, James AM, Dahm CC, Vitturi DA, Patel RP, Hiley CR, Abakumova I, Requejo R, Chouchani ET, Hurd TR, Garvey JF, Taylor CT, Brookes PS, Smith RA, Murphy MP (2009) A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury. Proc Natl Acad Sci U S A 106:10764–10769

    CAS  PubMed Central  PubMed  Google Scholar 

  • Proskuryakov SY, Gabai VL (2010) Mechanisms of tumor cell necrosis. Curr Pharm Des 16:56–68

    CAS  PubMed  Google Scholar 

  • Quast SA, Berger A, Buttstädt N, Friebel K, Schönherr R, Eberle J (2012) General Sensitization of melanoma cells for TRAIL-induced apoptosis by the potassium channel inhibitor TRAM-34 depends on release of SMAC. PLoS One 7:e39290

    CAS  PubMed Central  PubMed  Google Scholar 

  • Queirós O, Preto A, Pacheco A, Pinheiro C, Azevedo-Silva J, Moreira R, Pedro M, Ko YH, Pedersen PL, Baltazar F, Casal M (2012) Butyrate activates the monocarboxylate transporter MCT4 expression in breast cancer cells and enhances the antitumor activity of 3-bromopyruvate. J Bioenerg Biomembr 44:141–153

    PubMed  Google Scholar 

  • Raghavan A, Sheiko T, Graham BH, Craigen WJ (2012) Voltage-dependant anion channels: novel insights into isoform function through genetic models. Biochim Biophys Acta 1818:1477–1485

    CAS  PubMed  Google Scholar 

  • Rai P (2010) Oxidation in the nucleotide pool, the DNA damage response and cellular senescence: defective bricks build a defective house. Mutat Res 703:71–81

    CAS  PubMed  Google Scholar 

  • Ralph SJ, Neuzil J (2009) Mitochondria as targets for cancer therapy. Mol Nutr Food Res 53:9–28

    CAS  PubMed  Google Scholar 

  • Ralph SJ, Low P, Dong L, Lawen A, Neuzil J (2006) Mitocans: mitochondrial targeted anti-cancer drugs as improved therapies and related patent documents. Recent Pat Anticancer Drug Discov 1:327–346

    CAS  PubMed  Google Scholar 

  • Ralph SJ, Rodríguez-Enríquez S, Neuzil J, Saavedra E, Moreno-Sánchez R (2010) The causes of cancer revisited: “mitochondrial malignancy” and ROS-induced oncogenic transformation - why mitochondria are targets for cancer therapy. Mol Aspects Med 31:145–170

    CAS  PubMed  Google Scholar 

  • Ralph SJ, Moreno-Sánchez R, Neuzil J, Rodríguez-Enríquez S (2011) Inhibitors of succinate: quinone reductase/Complex II regulate production of mitochondrial reactive oxygen species and protect normal cells from ischemic damage but induce specific cancer cell death. Pharm Res 28:2695–2730

    CAS  PubMed  Google Scholar 

  • Rapizzi E, Pinton P, Szabadkai G, Wieckowski MR, Vandecasteele G, Baird G, Tuft RA, Fogarty KE, Rizzuto R (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca 2+ microdomains to mitochondria. J Cell Biol 159:613–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raschle T, Hiller S, Yu TY, Rice AJ, Walz T, Wagner G (2009) Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J Am Chem Soc 131:17777–17779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasola A, Bernardi P (2007) The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12:815–833

    CAS  PubMed  Google Scholar 

  • Rasola A, Bernardi P (2011) Mitochondrial permeability transition in Ca2+-dependent apoptosis and necrosis. Cell Calcium 50:222–233

    CAS  PubMed  Google Scholar 

  • Rasola A, Sciacovelli M, Chiara F, Pantic B, Brusilow WS, Bernardi P (2010a) Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition. Proc Natl Acad Sci U S A 107:726–731

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasola A, Sciacovelli M, Pantic B, Bernardi P (2010b) Signal transduction to the permeability transition pore. FEBS Lett 584:1989–1996

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rauer H, Pennington M, Cahalan M, Chandy KG (1999) Structural conservation of the pores of calcium-activated and voltage-gated potassium channels determined by a sea anemone toxin. J Biol Chem 274:21885–21892

    CAS  PubMed  Google Scholar 

  • Ravikumar B, Sarkar S, Davies JE, Futter M, Garcia-Arencibia M, Green-Thompson ZW, Jimenez-Sanchez M, Korolchuk VI, Lichtenberg M, Luo S, Massey DC, Menzies FM, Moreau K, Narayanan U, Renna M, Siddiqi FH, Underwood BR, Winslow AR, Rubinsztein DC (2010) Regulation of Mammalian autophagy in physiology and pathophysiology. Physiol Rev 90:1383–1435

    CAS  PubMed  Google Scholar 

  • Raviv Z, Cohen S, Reischer-Pelech D (2013) The anti-cancer activities of jasmonates. Cancer Chemother Pharmacol 71(2):275–285

    CAS  PubMed  Google Scholar 

  • Ren YR, Pan F, Parvez S, Fleig A, Chong CR, Xu J, Dang Y, Zhang J, Jiang H, Penner R, Liu JO (2008) Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes. PLoS One 3:e4009

    PubMed Central  PubMed  Google Scholar 

  • Ren D, Kim H, Tu HC, Westergard TD, Fisher JK, Rubens JA, Korsmeyer SJ, Hsieh JJ, Cheng EH (2009) The VDAC2-BAK rheostat controls thymocyte survival. Sci Signal 2:ra48

    PubMed  Google Scholar 

  • Ricchelli F, Sileikytė J, Bernardi P (2011) Shedding light on the mitochondrial permeability transition. Biochim Biophys Acta 1807:482–490

    CAS  PubMed  Google Scholar 

  • Ripcke J, Zarse K, Ristow M, Birringer M (2009) Small-molecule targeting of the mitochondrial compartment with an endogenously cleaved reversible tag. Chembiochem 10:1689–1696

    CAS  PubMed  Google Scholar 

  • Risso A, Braidot E, Sordano MC, Vianello A, Macrì F, Skerlavaj B, Zanetti M, Gennaro R, Bernardi P (2002) BMAP-28, an antibiotic peptide of innate immunity, induces cell death through opening of the mitochondrial permeability transition pore. Mol Cell Biol 22:1926–1935

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzuto R, De Stefani D, Raffaello A, Mammucari C (2012) Mitochondria as sensors and regulators of calcium signalling. Nat Rev Mol Cell Biol 13:566–578

    CAS  PubMed  Google Scholar 

  • Rodrigues-Ferreira C, da Silva AP, Galina A (2012) Effect of the antitumoral alkylating agent 3-bromopyruvate on mitochondrial respiration: role of mitochondrially bound hexokinase. J Bioenerg Biomembr 44:39–49

    CAS  PubMed  Google Scholar 

  • Rodríguez-Enríquez S, Hernández-Esquivel L, Marín-Hernández A, Dong LF, Akporiaye ET, Neuzil J, Ralph SJ, Moreno-Sánchez R (2012) Molecular mechanism for the selective impairment of cancer mitochondrial function by a mitochondrially targeted vitamin E analogue. Biochim Biophys Acta 1817:1597–1607

    PubMed  Google Scholar 

  • Roser KS, Brookes PS, Wojtovich AP, Olson LP, Shojaie J, Parton RL, Anders MW (2010) Mitochondrial biotransformation of omega-(phenoxy)alkanoic acids, 3-(phenoxy)acrylic acids, and omega-(1-methyl-1H-imidazol-2-ylthio)alkanoic acids: a prodrug strategy for targeting cytoprotective antioxidants to mitochondria. Bioorg Med Chem 18:1441–1448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rostovtseva TK, Bezrukov SM (1998) ATP transport through a single mitochondrial channel, VDAC, studied by current fluctuation analysis. Biophys J 74:2365–2373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rostovtseva T, Colombini M (1996) ATP flux is controlled by a voltage-gated channel from the mitochondrial outer membrane. J Biol Chem 271:28006–28008

    CAS  PubMed  Google Scholar 

  • Rostovtseva T, Colombini M (1997) VDAC channels mediate and gate the flow of ATP: implications for the regulation of mitochondrial function. Biophys J 72:1954–1962

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rostovtseva TK, Komarov A, Bezrukov SM, Colombini M (2002) VDAC channels differentiate between natural metabolites and synthetic molecules. J Membr Biol 187:147–156

    CAS  PubMed  Google Scholar 

  • Roy SS, Madesh M, Davies E, Antonsson B, Danial N, Hajnóczky G (2009) Bad targets the permeability transition pore independent of Bax or Bak to switch between Ca2+-dependent cell survival and death. Mol Cell 33:377–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruiz-Meana M, Fernandez-Sanz C, Garcia-Dorado D (2010) The SR-mitochondria interaction: a new player in cardiac pathophysiology. Cardiovasc Res 88:30–39

    CAS  PubMed  Google Scholar 

  • Saitoh M, Nishitoh H, Fujii M, Takeda K, Tobiume K, Sawada Y, Kawabata M, Miyazono K, Ichijo H (1998) Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 17:2596–2606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salvi M, Brunati AM, Toninello A (2005) Tyrosine phosphorylation in mitochondria: a new frontier in mitochondrial signaling. Free Radic Biol Med 38:1267–1277

    CAS  PubMed  Google Scholar 

  • Sampson MJ, Decker WK, Beaudet al, Ruitenbeek W, Armstrong D, Hicks MJ, Craigen WJ (2001) Immotile sperm and infertility in mice lacking mitochondrial voltage-dependent anion channel type 3. J Biol Chem 276:39206–39212

    Google Scholar 

  • Sanada S, Komuro I, Kitakaze M (2011) Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol 301:H1723–H1741

    CAS  PubMed  Google Scholar 

  • Sassi N, De Marchi U, Fioretti B, Biasutto L, Gulbins E, Francolini F, Szabò I, Zoratti M (2010) An investigation of the occurrence and properties of the mitochondrial intermediate conductance Ca2+-activated K+ channel mtKCa3.1. Biochim Biophys Acta 1797:1260–1267

    CAS  PubMed  Google Scholar 

  • Sassi N, Biasutto L, Mattarei A, Carraro M, Giorgio V, Citta A, Bernardi P, Garbisa S, Szabò I, Paradisi C, Zoratti M (2012) Cytotoxicity of a mitochondriotropic quercetin derivative: Mechanisms. Biochim Biophys Acta 1817:1095–1106

    CAS  PubMed  Google Scholar 

  • Sassi N, Mattarei A, Azzolini M, Bernardi P, Szabo I, Paradisi C, Zoratti M, Biasutto L (2014) Mitochondria-targeted resveratrol derivatives act as cytotoxic pro-oxidants. Curr Pharm Des 20:172–179

    CAS  PubMed  Google Scholar 

  • Sawant RR, Torchilin VP (2011) Design and synthesis of novel functional lipid-based bioconjugates for drug delivery and other applications. Methods Mol Biol 751:357–378

    CAS  PubMed  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    PubMed  Google Scholar 

  • Schein SJ, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30:99–120

    CAS  PubMed  Google Scholar 

  • Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci U S A 102:12005–12010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz A, Sankaranarayanan A, Azam P, Schmidt-Lassen K, Homerick D, Hänsel W, Wulff H (2005) Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol 68:1254–1270

    CAS  PubMed  Google Scholar 

  • Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P (2001) Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J Biol Chem 276:12035–12040

    CAS  PubMed  Google Scholar 

  • Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW (2011) BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta 1813:508–520

    CAS  PubMed  Google Scholar 

  • Sharaf el dein O, Gallerne C, Brenner C, Lemaire C (2012) Increased expression of VDAC1 sensitizes carcinoma cells to apoptosis induced by DNA cross-linking agents. Biochem Pharmacol 83:1172–1182

    CAS  PubMed  Google Scholar 

  • Shimada H, Hirai K, Simamura E, Hatta T, Iwakiri H, Mizuki K, Hatta T, Sawasaki T, Matsunaga S, Endo Y, Shimizu S (2009) Paraquat toxicity induced by voltage-dependent anion channel 1 acts as an NADH-dependent oxidoreductase. J Biol Chem 284:28642–28649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shimizu S, Tsujimoto Y (2000) Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci U S A 97:577–582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shoshan MC (2012) 3-Bromopyruvate: targets and outcomes. J Bioenerg Biomembr 44:7–15

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Ben-Hail D (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12:24–34

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Golan M (2012) Mitochondrial VDAC1: function in cell life and death and a target for cancer therapy. Curr Med Chem 19:714–735

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Mizrachi D (2012) VDAC1: from structure to cancer therapy. Front Oncol 2:164

    PubMed Central  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12:2249–2270

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Keinan N, Zaid H (2008) Uncovering the role of VDAC in the regulation of cell life and death. J Bioenerg Biomembr 40:183–191

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N, Arbel N (2010a) VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med 31:227–285

    CAS  PubMed  Google Scholar 

  • Shoshan-Barmatz V, Keinan N, Abu-Hamad S, Tyomkin D, Aram L (2010b) Apoptosis is regulated by the VDAC1 N-terminal region and by VDAC oligomerization: release of cytochrome c, AIF and Smac/Diablo. Biochim Biophys Acta 1797:1281–1291

    CAS  PubMed  Google Scholar 

  • Shoudai K, Nonaka K, Maeda M, Wang ZM, Jeong HJ, Higashi H, Murayama N, Akaike N (2007) Effects of various K + channel blockers on spontaneous glycine release at rat spinal neurons. Brain Res 1157:11–22

    CAS  PubMed  Google Scholar 

  • Sileikyte J, Petronilli V, Zulian A, Dabbeni-Sala F, Tognon G, Nikolov P, Bernardi P, Ricchelli F (2011) Regulation of the inner membrane mitochondrial permeability transition by the outer membrane translocator protein (peripheral benzodiazepine receptor). J Biol Chem 286:1046–1053

    CAS  PubMed Central  PubMed  Google Scholar 

  • Silic-Benussi M, Cannizzaro E, Venerando A, Cavallari I, Petronilli V, La Rocca N, Marin O, Chieco-Bianchi L, Di Lisa F, D’Agostino DM, Bernardi P, Ciminale V (2009) Modulation of mitochondrial K(+) permeability and reactive oxygen species production by the p13 protein of human T-cell leukemia virus type 1. Biochim Biophys Acta 1787:947–954

    CAS  PubMed  Google Scholar 

  • Simamura E, Hirai K, Shimada H, Koyama J, Niwa Y, Shimizu S (2006) Furanonaphthoquinones cause apoptosis of cancer cells by inducing the production of reactive oxygen species by the mitochondrial voltage-dependent anion channel. Cancer Biol Ther 5:1523–1529

    CAS  PubMed  Google Scholar 

  • Simamura E, Shimada H, Hatta T, Hirai K (2008) Mitochondrial voltage-dependent anion channels (VDACs) as novel pharmacological targets for anti-cancer agents. J Bioenerg Biomembr 40:213–217

    CAS  PubMed  Google Scholar 

  • Skulachev VP (2012) Mitochondria-targeted antioxidants as promising drugs for treatment of age-related brain diseases. J Alzheimers Dis 28:283–289

    CAS  PubMed  Google Scholar 

  • Skulachev VP, Anisimov VN, Antonenko YN, Bakeeva LE, Chernyak BV, Erichev VP, Filenko OF, Kalinina NI, Kapelko VI, Kolosova NG, Kopnin BP, Korshunova GA, Lichinitser MR, Obukhova LA, Pasyukova EG, Pisarenko OI, Roginsky VA, Ruuge EK, Senin II, Severina II, Skulachev MV, Spivak IM, Tashlitsky VN, Tkachuk VA, Vyssokikh MY, Yaguzhinsky LS, Zorov DB (2009) An attempt to prevent senescence: a mitochondrial approach. Biochim Biophys Acta 1787:437–461

    CAS  PubMed  Google Scholar 

  • Skulachev MV, Antonenko YN, Anisimov VN, Chernyak BV, Cherepanov DA, Chistyakov VA, Egorov MV, Kolosova NG, Korshunova GA, Lyamzaev KG, Plotnikov EY, Roginsky VA, Savchenko AY, Severina II, Severin FF, Shkurat TP, Tashlitsky VN, Shidlovsky KM, Vyssokikh MY, Zamyatnin AA Jr, Zorov DB, Skulachev VP (2011) Mitochondrial-targeted plastoquinone derivatives. Effect on senescence and acute age-related pathologies. Curr Drug Targets 12:800–826

    CAS  PubMed  Google Scholar 

  • Sloan RC, Moukdar F, Frasier CR, Patel HD, Bostian PA, Lust RM, Brown DA (2012) Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. J Mol Cell Cardiol 52:1009–1018

    CAS  PubMed  Google Scholar 

  • Smith RA, Murphy MP (2010) Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci 1201:96–103

    CAS  PubMed  Google Scholar 

  • Smith RA, Hartley RC, Murphy MP (2011) Mitochondria-targeted small molecule therapeutics and probes. Antioxid Redox Signal 15:3021–3038

    CAS  PubMed  Google Scholar 

  • Smith RA, Hartley RC, Cochemé HM, Murphy MP (2012) Mitochondrial pharmacology. Trends Pharmacol Sci 33:341–352

    CAS  PubMed  Google Scholar 

  • Solaini G, Baracca A, Lenaz G, Sgarbi G (2010) Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797:1171–1177

    CAS  PubMed  Google Scholar 

  • Solaini G, Sgarbi G, Baracca A (2011) Oxidative phosphorylation in cancer cells. Biochim Biophys Acta 1807:534–542

    CAS  PubMed  Google Scholar 

  • Starkov AA (2008) The role of mitochondria in reactive oxygen species metabolism and signaling. Ann N Y Acad Sci 1147:37–52

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stella C, Burgos I, Chapela S, Gamondi O (2011) Ischemia–reperfusion: a look from yeast mitochondria. Curr Med Chem 18:3476–3484

    CAS  PubMed  Google Scholar 

  • Stoler DL, Chen N, Basik M, Kahlenberg MS, Rodriguez-Bigas MA, Petrelli NJ, Anderson GR (1999) The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci U S A 96:15121–15126

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stoyanovsky DA, Vlasova II, Belikova NA, Kapralov A, Tyurin V, Greenberger JS, Kagan VE (2008) Activation of NO donors in mitochondria: peroxidase metabolism of (2-hydroxyamino-vinyl)-triphenyl-phosphonium by cytochrome c releases NO and protects cells against apoptosis. FEBS Lett 582:725–728

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sugioka R, Shimizu S, Funatsu T, Tamagawa H, Sawa Y, Kawakami T, Tsujimoto Y (2003) BH4-domain peptide from Bcl-xL exerts anti-apoptotic activity in vivo. Oncogene 22:8432–8440

    CAS  PubMed  Google Scholar 

  • Szabò I, Adams C, Gulbins E (2004) Ion channels and membrane rafts in apoptosis. Pflugers Arch 448:304–312

    PubMed  Google Scholar 

  • Szabò I, Bock J, Jekle A, Soddemann M, Adams C, Lang F, Zoratti M, Gulbins E (2005) A novel potassium channel in lymphocyte mitochondria. J Biol Chem 280:12790–12798

    PubMed  Google Scholar 

  • Szabò I, Bock J, Grassmé H, Soddemann M, Wilker B, Lang F, Zoratti M, Gulbins E (2008) Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes. Proc Natl Acad Sci U S A 105:14861–14866

    PubMed Central  PubMed  Google Scholar 

  • Szabò I, Zoratti M, Gulbins E (2010) Contribution of voltage-gated potassium channels to the regulation of apoptosis. FEBS Lett 584:2049–2056

    PubMed  Google Scholar 

  • Szabò I, Soddemann M, Leanza L, Zoratti M, Gulbins E (2011) Single-point mutations of a lysine residue change function of Bax and Bcl-xL expressed in Bax- and Bak-less mouse embryonic fibroblasts: novel insights into the molecular mechanisms of Bax-induced apoptosis. Cell Death Differ 18:427–438

    PubMed Central  PubMed  Google Scholar 

  • Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  • Szeto HH (2008) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antiox Redox Signal 10:601–619

    CAS  Google Scholar 

  • Szeto HH, Schiller PW (2011) Novel therapies targeting inner mitochondrial membrane–from discovery to clinical development. Pharm Res 28:2669–2679

    CAS  PubMed  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    CAS  PubMed  Google Scholar 

  • Takeda K, Naguro I, Nishitoh H, Matsuzawa A, Ichijo H (2011) Apoptosis signaling kinases: from stress response to health outcomes. Antioxid Redox Signal 15:719–761

    CAS  PubMed  Google Scholar 

  • Tan W (2012) VDAC blockage by phosphorothioate oligonucleotides and its implication in apoptosis. Biochim Biophys Acta 1818:1555–1561

    CAS  PubMed  Google Scholar 

  • Tang Z, Yuan S, Hu Y, Zhang H, Wu W, Zeng Z, Yang J, Yun J, Xu R, Huang P (2012) Over-expression of GAPDH in human colorectal carcinoma as a preferred target of 3-bromopyruvate propyl ester. J Bioenerg Biomembr 44:117–125

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tatton WG, Chalmers-Redman RM (1998) Mitochondria in neurodegenerative apoptosis: an opportunity for therapy? Ann Neurol 44(3 Suppl 1):S134–S141

    CAS  PubMed  Google Scholar 

  • Tertil M, Jozkowicz A, Dulak J (2010) Oxidative stress in tumor angiogenesis- therapeutic targets. Curr Pharm Des 16:3877–3894

    CAS  PubMed  Google Scholar 

  • Tiepolo T, Angelin A, Palma E, Sabatelli P, Merlini L, Nicolosi L, Finetti F, Braghetta P, Vuagniaux G, Dumont JM, Baldari CT, Bonaldo P, Bernardi P (2009) The cyclophilin inhibitor Debio 025 normalizes mitochondrial function, muscle apoptosis and ultrastructural defects in Col6a1−/− myopathic mice. Br J Pharmacol 157:1045–1052

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tischner D, Manzl C, Soratroi C, Villunger A, Krumschnabel G (2012) Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis 17:1197–1209

    CAS  PubMed  Google Scholar 

  • Tormos KV, Chandel NS (2010) Inter-connection between mitochondria and HIFs. J Cell Mol Med 14:795–804

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tornero D, Posadas I, Ceña V (2011) Bcl-x(L) blocks a mitochondrial inner membrane channel and prevents Ca2+ overload-mediated cell death. PLoS One 6:e20423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Torres YP, Morera FJ, Carvacho I, Latorre R (2007) A marriage of convenience: beta-subunits and voltage-dependent K+ channels. J Biol Chem 282:24485–24489

    CAS  PubMed  Google Scholar 

  • Traba J, Del Arco A, Duchen MR, Szabadkai G, Satrústegui J (2012) SCaMC-1 promotes cancer cell survival by desensitizing mitochondrial permeability transition via ATP/ADP-mediated matrix Ca2+ buffering. Cell Death Differ 19:650–660

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S (2000) VDAC regulation by the Bcl-2 family of proteins. Cell Death Differ 7:1174–1181

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Shimizu S (2007) Role of the mitochondrial membrane permeability transition in cell death. Apoptosis 12:835–840

    CAS  PubMed  Google Scholar 

  • Tsujimoto Y, Nakagawa T, Shimizu S (2006) Mitochondrial membrane permeability transition and cell death. Biochim Biophys Acta 1757:1297–1300

    CAS  PubMed  Google Scholar 

  • Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414

    CAS  PubMed  Google Scholar 

  • Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105:17742–17747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ujwal R, Cascio D, Chaptal V, Ping P, Abramson J (2009) Crystal packing analysis of murine VDAC1 crystals in a lipidic environment reveals novel insights on oligomerization and orientation. Channels (Austin) 3:167–170

    CAS  Google Scholar 

  • Uribe-Carvajal S, Luévano-Martínez LA, Guerrero-Castillo S, Cabrera-Orefice A, Corona-de-la-Peña NA, Gutiérrez-Aguilar M (2011) Mitochondrial unselective channels throughout the eukaryotic domain. Mitochondrion 11:382–390

    CAS  PubMed  Google Scholar 

  • Vaidya B, Vyas SP (2012) Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer: development and characterization. J Drug Target 20:372–380

    CAS  PubMed  Google Scholar 

  • Vaidya B, Mishra N, Dube D, Tiwari S, Vyas SP (2009a) Targeted nucleic acid delivery to mitochondria. Curr Gene Ther 9:475–486

    CAS  PubMed  Google Scholar 

  • Vaidya B, Paliwal R, Rai S, Khatri K, Goyal AK, Mishra N, Vyas SP (2009b) Cell-selective mitochondrial targeting: a new approach for cancer therapy. Cancer Ther 7:141–148

    CAS  Google Scholar 

  • Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P (2010) Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17:922–930

    CAS  PubMed  Google Scholar 

  • Vaseva AV, Marchenko ND, Ji K, Tsirka SE, Holzmann S, Moll UM (2012) p53 opens the mitochondrial permeability transition pore to trigger necrosis. Cell 149:1536–1548

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vennekamp J, Wulff H, Beeton C, Calabresi PA, Grissmer S, Hänsel W, Chandy KG (2004) Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol 65:1364–1374

    CAS  PubMed  Google Scholar 

  • Verschoor ML, Wilson LA, Singh G (2010) Mechanisms associated with mitochondrial-generated reactive oxygen species in cancer. Can J Physiol Pharmacol 88:204–219

    CAS  PubMed  Google Scholar 

  • Vestweber D, Schatz G (1989) DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 338:170–172

    CAS  PubMed  Google Scholar 

  • Vianello A, Casolo V, Petrussa E, Peresson C, Patui S, Bertolini A, Passamonti S, Braidot E, Zancani M (2012) The mitochondrial permeability transition pore (PTP) – an example of multiple molecular exaptation? Biochim Biophys Acta 1817:2072–2086

    CAS  PubMed  Google Scholar 

  • Vicente R, Escalada A, Villalonga N, Texidó L, Roura-Ferrer M, Martín-Satué M, López-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A (2006) Association of Kv1.5 and Kv1.3 contributes to the major voltage-dependent K+ channel in macrophages. J Biol Chem 281:37675–37685

    CAS  PubMed  Google Scholar 

  • Villinger S, Briones R, Giller K, Zachariae U, Lange A, de Groot BL, Griesinger C, Becker S, Zweckstetter M (2010) Functional dynamics in the voltage-dependent anion channel. Proc Natl Acad Sci U S A 107:22546–22551

    CAS  PubMed Central  PubMed  Google Scholar 

  • von Stockum S, Basso E, Petronilli V, Sabatelli P, Forte MA, Bernardi P (2011) Properties of Ca2+ transport in mitochondria of Drosophila melanogaster. J Biol Chem 286:41163–41170

    Google Scholar 

  • Voss MJ, Niggemann B, Zänker KS, Entschladen F (2010) Tumour reactions to hypoxia. Curr Mol Med 10:381–386

    CAS  PubMed  Google Scholar 

  • Waldmeier PC, Feldtrauer JJ, Qian T, Lemasters JJ (2002) Inhibition of the mitochondrial permeability transition by the nonimmunosuppressive cyclosporin derivative NIM811. Mol Pharmacol 62:22–29

    CAS  PubMed  Google Scholar 

  • Wan KF, Chan SL, Sukumaran SK, Lee MC, Yu VC (2008) Chelerythrine induces apoptosis through a Bax/Bak-independent mitochondrial mechanism. J Biol Chem 283:8423–8433

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Yi J (2008) Cancer cell killing via ROS: to increase or decrease, that is the question. Cancer Biol Ther 7:1875–1884

    CAS  PubMed  Google Scholar 

  • Webster KA (2012) Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species. Future Cardiol 8:863–884

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weissig V (2011) From serendipity to mitochondria-targeted nanocarriers. Pharm Res 28:2657–2668

    CAS  PubMed  Google Scholar 

  • Weissig V (2012) Mitochondria-specific nanocarriers for improving the proapoptotic activity of small molecules. Methods Enzymol 508:131–155

    CAS  PubMed  Google Scholar 

  • Weissig V, Torchilin VP (2001) Towards mitochondrial gene therapy: DQAsomes as a strategy. J Drug Target 9:1–13

    CAS  PubMed  Google Scholar 

  • Whelan RS, Konstantinidis K, Wei AC, Chen Y, Reyna DE, Jha S, Yang Y, Calvert JW, Lindsten T, Thompson CB, Crow MT, Gavathiotis E, Dorn GW 2nd, O'Rourke B, Kitsis RN (2012) Bax regulates primary necrosis through mitochondrial dynamics. Proc Natl Acad Sci U S A 109:6566–6571

    CAS  PubMed Central  PubMed  Google Scholar 

  • White E, Karp C, Strohecker AM, Guo Y, Mathew R (2010) Role of autophagy in suppression of inflammation and cancer. Curr Opin Cell Biol 22:212–217

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wieckowski MR, Brdiczka D, Wojtczak L (2000) Long-chain fatty acids promote opening of the reconstituted mitochondrial permeability transition pore. FEBS Lett 484:61–64

    CAS  PubMed  Google Scholar 

  • Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, Hawkins C, Guha A (2011) Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 208:313–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu SB, Ma YS, Wu YT, Chen YC, Wei YH (2010) Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Mol Neurobiol 41:256–266

    CAS  PubMed  Google Scholar 

  • Wulff H, Castle NA, Pardo LA (2009) Voltage-gated potassium channels as therapeutic targets. Nat Rev Drug Discov 8:982–1001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu X, Decker W, Sampson MJ, Craigen WJ, Colombini M (1999) Mouse VDAC isoforms expressed in yeast: channel properties and their roles in mitochondrial outer membrane permeability. J Membr Biol 170:89–102

    CAS  PubMed  Google Scholar 

  • Xu J, Koni PA, Wang P, Li G, Kaczmarek L, Wu Y, Li Y, Flavell RA, Desir GV (2003) The voltage gated potassium channel Kv1.3 regulates energy homeostasis and body weight. Hum Mol Genet 12:551–559

    CAS  PubMed  Google Scholar 

  • Xuan Y, Hu X (2009) Naturally-occurring shikonin analogues–a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274:233–242

    CAS  PubMed  Google Scholar 

  • Yagoda N, von Rechenberg M, Zaganjor E, Bauer AJ, Yang WS, Fridman DJ, Wolpaw AJ, Smukste I, Peltier JM, Boniface JJ, Smith R, Lessnick SL, Sahasrabudhe S, Stockwell BR (2007) RAS-RAF-MEK-dependent oxidative cell death involving voltage-dependent anion channels. Nature 447:864–868

    PubMed Central  PubMed  Google Scholar 

  • Yamada Y, Harashima H (2012) Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 33:1589–1595

    CAS  PubMed  Google Scholar 

  • Yamada Y, Furukawa R, Yasuzaki Y, Harashima H (2011) Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Mol Ther 19:1449–1456

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamada Y, Akita H, Harashima H (2012) Multifunctional envelope-type nano device (MEND) for organelle targeting via a stepwise membrane fusion process. Methods Enzymol 509:301–326

    CAS  PubMed  Google Scholar 

  • Yang X, Cohen MV, Downey JM (2010) Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther 24:225–234

    PubMed Central  PubMed  Google Scholar 

  • Yasuzaki Y, Yamada Y, Harashima H (2010) Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes. Biochem Biophys Res Commun 397:181–186

    CAS  PubMed  Google Scholar 

  • Yousif LF, Stewart KM, Horton KL, Kelley SO (2009a) Mitochondria-penetrating peptides: sequence effects and model cargo transport. Chembiochem 10:2081–2088

    CAS  PubMed  Google Scholar 

  • Yousif LF, Stewart KM, Kelley SO (2009b) Targeting mitochondria with organelle-specific compounds: strategies and applications. Chembiochem 10:1939–1950

    CAS  PubMed  Google Scholar 

  • Yu K, Fu W, Liu H, Luo X, Chen KX, Ding J, Shen J, Jiang H (2004) Computational simulations of interactions of scorpion toxins with the voltage-gated potassium ion channel. Biophys J 86:3542–3555

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yu FH, Yarov-Yarovoy V, Gutman GA, Catterall WA (2005) Overview of molecular relationships in the voltage-gated ion channel superfamily. Pharmacol Rev 57:387–395

    CAS  PubMed  Google Scholar 

  • Yu TY, Raschle T, Hiller S, Wagner G (2012) Solution NMR spectroscopic characterization of human VDAC-2 in detergent micelles and lipid bilayer nanodiscs. Biochim Biophys Acta 1818:1562–1569

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12:751–760

    CAS  PubMed  Google Scholar 

  • Zalk R, Israelson A, Garty ES, Azoulay-Zohar H, Shoshan-Barmatz V (2005) Oligomeric states of the voltage-dependent anion channel and cytochrome c release from mitochondria. Biochem J 386:73–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhivotovsky B, Orrenius S (2010) Cell death mechanisms: cross-talk and role in disease. Exp Cell Res 316:1374–1383

    CAS  PubMed  Google Scholar 

  • Zhivotovsky B, Galluzzi L, Kepp O, Kroemer G (2009) Adenine nucleotide translocase: a component of the phylogenetically conserved cell death machinery. Cell Death Differ 16:1419–1425

    CAS  PubMed  Google Scholar 

  • Zimin PI, Garic B, Bodendiek SB, Mahieux C, Wulff H, Zhorov BS (2010) Potassium channel block by a tripartite complex of two cationophilic ligands and a potassium ion. Mol Pharmacol 78:588–599

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zoratti M, Szabó I (1994) Electrophysiology of the inner mitochondrial membrane. J Bioenerg Biomembr 26:543–553

    CAS  PubMed  Google Scholar 

  • Zoratti M, Szabò I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176

    PubMed  Google Scholar 

  • Zoratti M, Szabò I, De Marchi U (2005) Mitochondrial permeability transitions: how many doors to the house? Biochim Biophys Acta 1706:40–52

    CAS  PubMed  Google Scholar 

  • Zoratti M, De Marchi U, Gulbins E, Szabò I (2009) Novel channels of the inner mitochondrial membrane. Biochim Biophys Acta 1787:351–363

    CAS  PubMed  Google Scholar 

  • Zoratti M, De Marchi U, Biasutto L, Szabò I (2010) Electrophysiology clarifies the megariddles of the mitochondrial permeability transition pore. FEBS Lett 584:1997–2004

    CAS  PubMed  Google Scholar 

  • Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ (2009) Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 83:213–225

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the funding agencies supporting their work. The following are specifically acknowledged: an Italian Association for Cancer Research grant (to I.S. n. 11814), Progetti di Rilevante Interesse Nazionale (PRIN) grants (20107Z8XBW_004 to M.Z. and 2010CSJX4F_005 to I.S.), a Fondazione Cassa di Risparmio di Padova e Rovigo (CARIPARO) grant (to M.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Zoratti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biasutto, L., Szabò, I., Zoratti, M. (2014). Targets and Strategies for the Mitochondrial Assault on Cancer. In: Neuzil, J., Pervaiz, S., Fulda, S. (eds) Mitochondria: The Anti- cancer Target for the Third Millennium. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-8984-4_9

Download citation

Publish with us

Policies and ethics