Skip to main content
Log in

Inhibition of the intracellular Ca2+ transporter SERCA (Sarco-Endoplasmic Reticulum Ca2+-ATPase) by the natural polyphenol epigallocatechin-3-gallate

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The use of a microsomal preparation from skeletal muscle revealed that both Ca2+ transport and Ca2+-dependent ATP hydrolysis linked to Sarco-Endoplasmic Reticulum Ca2+–ATPase are inhibited by epigallocatechin-3-gallate (EGCG). A half-maximal effect was achieved at approx. 12 μM. The presence of the galloyl group was essential for the inhibitory effect of the catechin. The relative inhibition of the Ca2+-ATPase activity decreased when the Ca2+ concentration was raised but not when the ATP concentration was elevated. Data on the catalytic cycle indicated inhibition of maximal Ca2+ binding and a decrease in Ca2+ binding affinity when measured in the absence of ATP. Moreover, the addition of ATP to samples in the presence of EGCG and Ca2+ led to an early increase in phosphoenzyme followed by a time-dependent decay that was faster when the drug concentration was raised. However, phosphorylation following the addition of ATP plus Ca2+ led to a slow rate of phosphoenzyme accumulation that was also dependent on EGCG concentration. The results are consistent with retention of the transporter conformation in the Ca2+-free state, thus impeding Ca2+ binding and therefore the subsequent steps when ATP is added to trigger the Ca2+ transport process. Furthermore, phosphorylation by inorganic phosphate in the absence of Ca2+ was partially inhibited by EGCG, suggesting alteration of the native Ca2+-free conformation at the catalytic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blinks JR, Wier WG, Hess P, Prendergast F (1982) Measurement of Ca2+ concentrations in living cells. Prog Biophys Mol Biol 40:1–114

    Article  CAS  Google Scholar 

  • Campos-Toimil M, Orallo F (2007) Effects of (−)-epigallocatechin-3-gallate in Ca2+-permeable non-selective cation channels and voltage-operated Ca2+ channels in vascular smooth muscle cells. Life Sci 80:2147–2153

    Article  CAS  Google Scholar 

  • Champeil P, Guillain F (1986) Rapid filtration study of the phosphorylation-dependent dissociation of calcium from transport sites of purified sarcoplasmic reticulum ATPase and ATP modulation of the catalytic cycle. Biochem 25:7623–7633

    Article  CAS  Google Scholar 

  • Chen ZY, Chan PT, Ho KY, Fung KP, Wang J (1996) Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem Phys Lipids 79:157–163

    Article  CAS  Google Scholar 

  • Chen R, Wang J-B, Zhang X-Q, Ren J, Zeng C-M (2011) Green tea polyphenol epigallocatechin-3-gallate (EGCG) induced intermolecular cross-linking of membrane proteins. Arch Biochem Biophys 507:343–349

    Article  CAS  Google Scholar 

  • Chevallier J, Butow RA (1971) Calcium binding to the sarcoplasmic reticulum of rabbit skeletal muscle. Biochem 10:2733–2737

    Article  CAS  Google Scholar 

  • De Meis L, Vianna AL (1979) Energy interconversion by the Ca2+-dependent ATPase of the sarcoplasmic reticulum. Ann Rev Biochem 48:275–292

    Article  Google Scholar 

  • Deye J, Elam C, Lape M, Ratliff R, Evans K, Paula S (2009) Structure-based virtual screening for novel inhibitors of the sarco/endoplasmic reticulum calcium ATPase and their experimental evaluation. Bioorg Med Chem 17:1353–1360

    Article  CAS  Google Scholar 

  • Eletr S, Inesi G (1972) Phospholipid orientation in sarcoplasmic membranes: spin-label ESR and proton MNR studies. Biochim Biophys Acta 282:174–179

    Article  CAS  Google Scholar 

  • Fabiato A (1988) Computer programs for calculating total from specified free or free from specified total ionic concentrations in aqueous solutions containing multiple metals and ligands. Meth Enzymol 157:378–417

    Article  CAS  Google Scholar 

  • Feng W, Cherednichenko G, Ward CW, Padilla IT, Cabrales E, Lopez JR, Eltit JM, Allen PD, Pessah IN (2010) Green tea catechins are potent sensitizers of ryanodine receptor type 1 (RyR1). Biochem Pharmacol 80:512–521

    Article  CAS  Google Scholar 

  • Froehlich JP, Taylor EW (1975) Transient state kinetic studies of sarcoplasmic reticulum adenosine triphosphatase. J Biol Chem 250:2013–2021

    CAS  Google Scholar 

  • Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S (2003) (−)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochem Pharmacol 66:1769–1778, http://www.healthymolecules.com/3d/epigallocatechin_gallate_3d.htm

    Article  CAS  Google Scholar 

  • Hayashi N, Ujihara T (2007) ‘Bitting effect’ stabilizing gallate-type catechin/quaternary ammonium ion complexes. Tetrahedron 63:9802–9809

    Article  CAS  Google Scholar 

  • Inesi G, Maring E, Murphy AJ, McFarland BH (1970) A study of the phosphorylated intermediate of sarcoplasmic reticulum ATPase. Arch Biochem Biophys 138:285–294

    Article  CAS  Google Scholar 

  • Inesi G, Kurzmack M, Coan C, Lewis DE (1980) Cooperative calcium binding and ATPase activation in sarcoplasmic reticulum vesicles. J Biol Chem 255:3025–3031

    CAS  Google Scholar 

  • Inesi G, Kurzmack M, Kosk-Kosicka D, Lewis D, Scofano H, Guimaraes-Motta H (1982) Equilibrium and kinetic studies of calcium transport and ATPase activity in sarcoplasmic reticulum. Z Naturforsch 37c:685–691

    CAS  Google Scholar 

  • Inesi G, Kurzmack M, Lewis D (1988) Kinetic and equilibrium characterization of an energy-transducing enzyme and its partial reactions. Meth Enzymol 157:154–190

    Article  CAS  Google Scholar 

  • Inoue T, Suzuki Y, Ra C (2011) Epigallocatechin-3-gallate induces cytokine production in mast cells by stimulating an extracellular superoxide-mediated calcium influx. Biochem Pharmacol 82:1930–1939

    Article  CAS  Google Scholar 

  • Jovanovic S, Simic MG (2000) Antioxidants in nutrition. Ann NY Acad Sci 899:326–334

    Article  CAS  Google Scholar 

  • Khan N, Mukhtar H (2007) Tea polyphenols for health promotion. Life Sci 81:519–533

    Article  CAS  Google Scholar 

  • Kim HJ, Yum KS, Sung J-H, Rhie D-J, Kim M-J, Min DS, Hahn SJ, Kim M-S, Jo Y-H, Yoon SH (2004) Epigallocatechin-3-gallate increases intracellular [Ca2+] in U87 cells mainly by influx of extracellular Ca2+ and partly by release of intracellular stores. Naunyn-Schmied Arch Pharmacol 369:260–267

    Article  CAS  Google Scholar 

  • Kolassa N, Punzengruber C, Suko J, Makinose M (1979) Mechanism of calcium-independent phosphorylation of sarcoplasmic reticulum ATPase by orthophosphate. FEBS Lett 108:495–500

    Article  CAS  Google Scholar 

  • Kurogi M, Miyashita M, Emoto Y, Kubo Y, Saitoh O (2012) Green tea polyphenol epigallocatechin gallate activates TRPA1 in an intestinal enteroendocrine cell line, STC-1. Chem Senses 37:167–177

    Article  CAS  Google Scholar 

  • Kuzuhara T, Iwai Y, Takahashi H, Hatakeyama D, Echigo N (2009) Green tea catechins inhibit the endonuclease activity of influenza A virus RNA polymerase. PLoS Curr 1:RRN1052

    Article  Google Scholar 

  • Lambert JD, Elias RJ (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65–72

    Article  CAS  Google Scholar 

  • Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA (1979) An improved assay for nanomole amounts of inorganic phosphate. Anal Biochem 100:95–97

    Article  CAS  Google Scholar 

  • Lape M, Elam C, Versluis M, Kempton R, Paula S (2008) Molecular determinants of sarco/endoplasmic reticulum calcium ATPase inhibition by hydroquinone-based compounds. Proteins 70:639–649

    Article  CAS  Google Scholar 

  • Logan-Smith MJ, Lockyer PJ, East JM, Lee AG (2001) Curcumin, a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+. J Biol Chem 276:46905–46911

    Article  CAS  Google Scholar 

  • Lorenz M, Hellige N, Rieder P, Kinkel H-T, Trimpert C, Staudt A, Felix SB, Baumann G, Stangl K, Stangl V (2008) Possitive inotropic effects of epigallocatechin-3-gallate (EGCG) involve activation of Na+/H+ and Na+/Ca2+ exchangers. Eur J Heart Fail 10:439–445

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Mahmmoud YA (2008) Capsaicin stimulates uncoupled ATP hydrolysis by the sarcoplasmic reticulum calcium pump. J Biol Chem 283:21418–21426

    Article  CAS  Google Scholar 

  • Martonosi A, Feretos R (1964) The uptake of Ca2+ by sarcoplasmic reticulum fragments. J Biol Chem 239:648–658

    CAS  Google Scholar 

  • Masuda H, de Meis L (1973) Phosphorylation of the sarcoplasmic reticulum membrane by ortophosphate. Inhibition by calcium ions. Biochem 12:4581–4585

    Article  CAS  Google Scholar 

  • Nagle DG, Ferreira D, Zhou Y-D (2006) Epigallocatechin-3-gallate (EGCG): chemical and biomedical perspectives. Phytochemistry 67:1849–1855

    Article  CAS  Google Scholar 

  • Obara K, Miyashita N, Xu C, Toyoshima I, Sugita Y, Inesi G, Toyoshima C (2005) Structural role of countertransport revealed in Ca2+ pump crystal structure in the absence of Ca2+. Proc Natl Acad Sci USA 102:14489–14496

    Article  CAS  Google Scholar 

  • Oneda H, Shiihara M, Inouye K (2003) Inhibitory effects of green tea catechins on the activity of human matrix metalloproteinase 7 (matrilysin). J Biochem 133:571–576

    Article  CAS  Google Scholar 

  • Sagara Y, Inesi G (1991) Inhibition of the sarcoplasmic reticulum Ca2+ transport ATPase by thapsigargin at subnanomolar concentrations. J Biol Chem 266:13503–13506

    CAS  Google Scholar 

  • Sagara Y, Fernandez-Belda F, de Meis L, Inesi G (1992) Characterization of the inhibition of intracellular Ca2+ transport ATPases by thapsigargin. J Biol Chem 267:12606–12613

    CAS  Google Scholar 

  • Sang S, Hou Z, Lambert JD, Yang CS (2005) Redox properties of tea polyphenols and related biological activities. Antioxid Redox Signal 7:1704–1714

    Article  CAS  Google Scholar 

  • Schwartzenbach G, Senn H, Anderegg G (1957) Komplexone.XXIX. Ein grosser Chelateffekt besonderer. Helv Chim Acta 40:1886–1900

    Article  Google Scholar 

  • Stangl V, Dreger H, Stangl K, Lorenz M (2007) Molecular targets of tea polyphenols in the cardiovascular system. Cardiovasc Res 73:348–358

    Article  CAS  Google Scholar 

  • Tadini-Buoninsegni F, Bartolommei G, Moncelli MR, Tal DM, Lewis D, Inesi G (2008) Effects of high-affinity inhibitors on partial reactions, charge movements, and conformational states of the Ca2+ transport ATPase (Sarco-endoplasmic reticulum Ca2+ ATPase). Mol Pharmacol 73:1134–1140

    Article  CAS  Google Scholar 

  • Toyoshima C (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta 1793:941–946

    Article  CAS  Google Scholar 

  • Wang J-H, Cheng J, Li C-R, Ye M, Ma Z, Cai F (2011) Modulation of Ca2+ signals by epigallocatechin-3-gallate (EGCG) in cultured rat hippocampal neurons. Int J Mol Sci 12:742–754

    Article  CAS  Google Scholar 

  • Wictome M, Michelangeli F, Lee AG, East JM (1992) The inhibitors thapsigargin and 2,5-di(tert-butyl)-1,4-benzohydroquinone favour the E2 form of the Ca2+, Mg2 + -ATPase. FEBS Lett 304:109–113

    Article  CAS  Google Scholar 

  • Wu P-P, Kuo S-C, Huang W-W, Yang J-S, Lai K-C, Chen H-J, Lin K-L, Chiu Y-J, Huang L-J, Chung J-G (2009) (−)-Epigallocatechin gallate induced apoptosis in human adrenal cancer NCI-H295 cells through caspase-dependent and caspase-independent pathway. Anticancer Res 29:1435–1442

    CAS  Google Scholar 

  • Yin S-T, Tang M-L, Deng H-M, Xing T-R, Chen J-T, Wang H-L, Ruan D-Y (2009) Epigallocatechin-3-gallate induced primary cultures of rat hippocampal neurons death linked to calcium overload and oxidative stress. Naunyn-Schmied Arch Pharmacol 379:551–564

    Article  CAS  Google Scholar 

  • Yu X, Inesi G (1995) Variable stoichiometric efficiency of Ca2+ and Sr2+ transport by the sarcoplasmic reticulum ATPase. J Biol Chem 270:4361–4367

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Fernández-Belda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soler, F., Asensio, M.C. & Fernández-Belda, F. Inhibition of the intracellular Ca2+ transporter SERCA (Sarco-Endoplasmic Reticulum Ca2+-ATPase) by the natural polyphenol epigallocatechin-3-gallate. J Bioenerg Biomembr 44, 597–605 (2012). https://doi.org/10.1007/s10863-012-9462-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9462-z

Keywords

Navigation