Skip to main content

Uncoupling of P-Type ATPases

  • Chapter
  • First Online:
Regulation of Membrane Na+-K+ ATPase

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 15))

  • 1109 Accesses

Abstract

Cation-transporting P-type ATPases such as Na+,K+-ATPase, gastric H+,K+-ATPase, and sarcoplasmic reticulum Ca2+-ATPase use energy from ATP hydrolysis to establish electrochemical gradients for ions across cellular membranes. These pumps also perform specialized functions. In particular, sarcoplasmic reticulum Ca2+-ATPase is involved in nonshivering thermogenesis. We have identified the first chemical compound, capsaicin, which uncouples ATP hydrolysis from Ca2+ transport through Ca2+-ATPase. Under physiological conditions, uncoupling of sarcoplasmic reticulum Ca2+-ATPase is likely mediated by interaction with sarcolipin, a small protein highly expressed in skeletal muscle. In addition, we have characterized a drug that selectively abolishes K+-dependent activity of the Na+,K+-ATPase, uncoupling Na+- from Na+,K+ exchange. Here we provide basic information on the function and mechanism of P-type pumps. In addition, we review recent developments on the drug-mediated uncoupling of sarcoplasmic reticulum Ca2+-ATPase and Na+,K+-ATPase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Palmgren M, Nissen P (2011) P-type ATPases. Annu Rev Biophys 40:243–266

    Article  CAS  PubMed  Google Scholar 

  2. Toyoshima C, Cornelius F (2013) New crystal structures PII-type ATPases: excitement continues. Curr Opin Struct Biol 23:507–514

    Article  CAS  PubMed  Google Scholar 

  3. Kaplan JH (2002) Biochemistry of Na+, K+-ATPase. Annu Rev Biochem 71:511–535

    Article  CAS  PubMed  Google Scholar 

  4. Geering K (2008) Functional roles of Na+, K+-ATPase subunits. Curr Opin Nephrol Hypertens 17:526–532

    Article  CAS  PubMed  Google Scholar 

  5. Cornelius F, Mahmmoud YA (2003) Functional modulation of the sodium pump. The regulatory proteins “Fixit”. News Phyiol Sci 18:119–124

    CAS  Google Scholar 

  6. Dostanic-Larson I, Lorenz JN, Van Huysse JW et al (2006) Physiological role of the alpha 1 and alpha 2 isoforms of the Na+, K+-ATPase and biological significance of their cardiac glycoside binding site. Am J Physiol Regul Integr Comp Physiol 290:R524–R528

    Article  CAS  PubMed  Google Scholar 

  7. Paul D, Soignier RD, Minor L et al (2014) Regulation and pharmacological blockade of sodium-potassium ATPase: a novel pathway to neuropathy. J Neurol Sci 340:139–143

    Article  CAS  PubMed  Google Scholar 

  8. Rajasekaran SA, Barwe SP, Rajasekaran AK (2005) Multiple functions of Na+, K+-ATPase in epithelial cells. Semin Nephrol 25:328–334

    Article  CAS  PubMed  Google Scholar 

  9. Tian J, Cai T, Yuan Z et al (2006) Binding of Src to Na+, K+-ATPase forms a functional signaling complex. Mol Biol Cell 17:317–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aperia A (2007) New roles for an old enzyme: Na+, K+-ATPase emerges as an interesting drug target. J Intern Med 261:44–52

    Article  CAS  PubMed  Google Scholar 

  11. Prassas I, Diamandis EP (2008) Novel therapeutic applications of cardiac glycosides. Nat Rev Drug Discov 7:926–935

    Article  CAS  PubMed  Google Scholar 

  12. Blanco G, Mercer RW (1998) Isozymes of the Na+, K+-ATPase: heterogeneity in structure, diversity in function. Am J Physiol 275:F633–F650

    CAS  PubMed  Google Scholar 

  13. Blanco G, Sánchez G, Melton RJ et al (2000) The alpha4 isoform of the Na+, K+-ATPase is expressed in the germ cells of the testes. J Histochem Cytochem 48:1023–1032

    Article  CAS  PubMed  Google Scholar 

  14. Heinzen E, Arzimanoglou A, Brashear A et al (2014) Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 13:503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fajardo VA, Bombardier E, Vigna C et al (2013) Co-expression of SERCA isoforms, phospholamban and sarcolipin in human skeletal muscle fibers. PLoS One 8:e84304. doi:10.1371/ journal.pone.0084304

    Article  PubMed  PubMed Central  Google Scholar 

  16. Odermatt A, Taschner PEM, Khanna VK et al (1996) Mutations in the gene-encoding SERCA1, the fast twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase, are associated with Brody disease. Nat Genet 14:191–194

    Article  CAS  PubMed  Google Scholar 

  17. Ringpfeil F, Raus A, DiGiovanna JJ et al (2001) Darier disease—novel mutations in ATP2A2 and genotype-phenotype correlation. Exp Dermatol 10:19–27

    Article  CAS  PubMed  Google Scholar 

  18. Foggia L, Hovnanian A (2004) Calcium pump disorders of the skin. Am J Med Genet C: Semin Med Genet 131C:20–31

    Article  Google Scholar 

  19. Denmeade SR, Isaacs JT (2005) The SERCA pump as a therapeutic target. Cancer Biol Ther 4:14–22

    Article  CAS  PubMed  Google Scholar 

  20. Kawase Y, Hajjar RJ (2008) The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular disease. Nat Clin Pract Cardiovasc Med 5:554–565

    Article  CAS  PubMed  Google Scholar 

  21. Christensen SB, Skytte DM, Denmeade SR et al (2009) A Trojan horse in drug development: targeting of thapsigargins towards prostate cancer cells. Anticancer Agents Med Chem 9:276–294

    Article  CAS  PubMed  Google Scholar 

  22. Grishin AV, Bevensee MO, Modyanov NN et al (1996) Functional expression of the cDNA encoded by the human ATP1AL1 gene. Am J Physiol 271:F539–F551

    CAS  PubMed  Google Scholar 

  23. Cornelius F, Mahmmoud YA (2003) Direct activation of gastric H, K-ATPase by N-terminal protein kinase C phosphorylation. Comparison of the acute regulation mechanisms of H, K-ATPase and Na, K-ATPase. Biophys J 84:1690–1700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Courtois-Coutry N, Roush D, Rajendran V et al (1997) A tyrosine-based signal targets H+/K+-ATPase to a regulated compartment and is required for the cessation of gastric acid secretion. Cell 90:501–510

    Article  CAS  PubMed  Google Scholar 

  25. Colina C, Rosenthal JJ, DeGiorgis JA et al (2007) Structural basis of Na+, K+-ATPase adaptation to marine environments. Nat Struct Mol Biol 14:427–431

    Article  CAS  PubMed  Google Scholar 

  26. Abe K, Tani K, Nishizawa T et al (2009) Inter-subunit interaction of gastric H+, K+-ATPase prevents reverse reaction of the transport cycle. EMBO J 28:1637–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Dürr KL, Abe K, Tavraz NN et al (2009) E2P state stabilization by the N-terminal tail of the H+, K+-ATPase beta-subunit is critical for efficient proton pumping under in vivo conditions. J Biol Chem 284:20147–20154

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rabon EC, McFall TL, Sachs G (1982) The gastric H+, K+-ATPase: H+/ATP stoichiometry. J Biol Chem 257:6296–6299

    CAS  PubMed  Google Scholar 

  29. Abe K, Tani K, Friedrich T et al (2012) Cryo-EM structure of gastric H+, K+-ATPase with a single occupied cation-binding site. Proc Natl Acad Sci U S A 109:18401–18406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Einholm AP, Toustrup-Jensen MS, Holm R, Andersen JP, Vilsen B (2010) The rapid-onset dystonia parkinsonism mutation D923N of the Na+, K+-ATPase alpha3 isoform disrupts Na+ interaction at the third Na+ site. J Biol Chem 285:26245–26254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaplan JH (1983) Sodium ions and the sodium pump: transport and enzymatic activity. Am J Physiol 245:G327–G333

    CAS  PubMed  Google Scholar 

  32. Blostein R (1983) The influence of cytoplasmic sodium concentration on the stoichiometry of the sodium pump. J Biol Chem 258:12228–12232

    CAS  PubMed  Google Scholar 

  33. Cornelius F (1989) Uncoupled Na+-efflux on reconstituted shark Na+, K+-ATPase is electrogenic. Biochem Biophys Res Commun 160:801–807

    Article  CAS  PubMed  Google Scholar 

  34. Glynn I, Karlish SJD (1976) ATP hydrolysis associated with an uncoupled Na+ efflux through the sodium pump: evidence for allosteric effects of intracellular ATP and extracellular Na+. J Physiol 256:465–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sachs JR (1981) Mechanistic implications of the potassium-potassium exchange carried out by the sodium-potassium pump. J Physiol 316:263–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Clarke RJ, Catauro M, Rasmussen HH et al (2013) Quantitative calculation of the role of the Na+, K+-ATPase in thermogenesis. Biochim Biophys Acta 1827:1205–1212

    Article  CAS  PubMed  Google Scholar 

  37. Clark DG, Brinkman M, Filsell OH et al (1982) No major thermogenic role for Na+, K+-dependent adenosine triphosphatase apparent in hepatocytes from hyperthyroid rats. Biochem J 202:661–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haas M, Askari A, Xie Z (2000) Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na+/K+-ATPase. J Biol Chem 275:27832–27837

    CAS  PubMed  Google Scholar 

  39. Tian J, Gong X, Xie Z (2001) Signal-transducing function of Na+-K+-ATPase is essential for ouabain’s effect on [Ca2+]i in rat cardiac myocytes. Am J Physiol Heart Cir Physiol 281:H1899–H1907

    CAS  Google Scholar 

  40. Xie Z, Askari A (2002) Na+, K+-ATPase as a signal transducer. Eur J Biochem 269:2434–2439

    Article  CAS  PubMed  Google Scholar 

  41. de Meis L (2001) Uncoupled ATPase activity and heat production by the sarcoplasmic reticulum Ca2+-ATPase. Regulation by ADP. J Biol Chem 276:25078–25087

    Article  PubMed  Google Scholar 

  42. de Meis L (2002) Ca2+-ATPases (SERCA): energy transduction and heat production in transport ATPases. J Membr Biol 188:1–9

    Article  PubMed  Google Scholar 

  43. Carey FG (1982) A brain heater in the swordfish. Science 216:1327–1329

    Article  CAS  PubMed  Google Scholar 

  44. Block BA, Franzini-Armstrong C (1988) The structure of the membrane systems in a novel muscle cell modified for heat production. J Cell Biol 107:1099–1112

    Article  CAS  PubMed  Google Scholar 

  45. Block BA, O’Brien J, Meissner G (1994) Characterization of the sarcoplasmic reticulum proteins in the thermogenic muscles of fish. J Cell Biol 127:1275–1287

    Article  CAS  PubMed  Google Scholar 

  46. Betzenhauser MJ, Marks AR (2010) Ryanodine receptor channelopathies. Pflugers Arch 460:467–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kjelstrup S, de Meis L, Bedeaux D et al (2008) Is the Ca2+-ATPase from sarcoplasmic reticulum also a heat pump? Eur Biophys J 38:59–67

    Article  CAS  PubMed  Google Scholar 

  48. Lervik A, Bresme F, Rubí JM (2012) On the thermodynamic efficiency of Ca2+-ATPase molecular machines. Biophys J 103:1218–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Logan-Smith MJ, Lockyer PJ, East JM et al (2001) Curcumin, a molecule that inhibits the Ca2+-ATPase of sarcoplasmic reticulum but increases the rate of accumulation of Ca2+. J Biol Chem 276:46905–46911

    Article  CAS  PubMed  Google Scholar 

  50. Mahmmoud YA (2008) Capsaicin stimulates uncoupled ATP hydrolysis by the sarcoplasmic reticulum calcium pump. J Biol Chem 283:21418–21426

    Article  CAS  PubMed  Google Scholar 

  51. Møller JV, Lenoir G, Marchand C et al (2002) Calcium transport by sarcoplasmic reticulum Ca2+-ATPase. Role of the A domain and its C-terminal link with the transmembrane region. J Biol Chem 277:38647–38659

    Article  PubMed  Google Scholar 

  52. Lenoir G, Picard M, Gauron C et al (2004) Functional properties of sarcoplasmic reticulum Ca2+-ATPase after proteolytic cleavage at Leu110-Lys120, close to the A domain. J Biol Chem 279:9156–9166

    Article  CAS  PubMed  Google Scholar 

  53. Toyoshima C (2009) How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane. Biochim Biophys Acta 1793:941–946

    Article  CAS  PubMed  Google Scholar 

  54. Scotter EL, Abood ME, Glass M (2010) The endocannabinoid system as a target for the treatment of neurodegenerative disease. Br J Pharmacol 160:480–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Szallasi A, Blumberg PM (1999) Vanilloid (capsaicin) receptors and mechanisms. Pharmacol Rev 51:159–212

    CAS  PubMed  Google Scholar 

  56. Mahmmoud YA, Gaster M (2012) Uncoupling of sarcoplasmic reticulum Ca2+-ATPase by N-arachidonoyl dopamine. Members of the endocannabinoid family as thermogenic drugs. Br J Pharmacol 166:2060–2069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bal NC, Maurya SK, Sopariwala DH et al (2012) Sarcolipin is a newly identified regulator of muscle-based thermogenesis in mammals. Nat Med 18:1575–1579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sahoo SK, Shaikh SA, Sopariwala DH et al (2013) Sarcolipin protein interaction with sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) is distinct from phospholamban protein, and only sarcolipin can promote uncoupling of the SERCA pump. J Biol Chem 288:6881–6889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Toyoshima C, Iwasawa S, Ogawa H et al (2013) Crystal structures of the calcium pump and sarcolipin in the Mg2+-bound E1 state. Nature 495:260–264

    Article  CAS  PubMed  Google Scholar 

  60. Winther A-ML, Bublitz M, Karlsen JL et al (2013) The sarcolipin-bound calcium pump stabilizes calcium sites exposed to the cytoplasm. Nature 495:265–269

    Article  CAS  PubMed  Google Scholar 

  61. Walpole CSJ, Bevan S, Bovermann G et al (1994) The discovery of CPZ, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 37:1942–1954

    Article  CAS  PubMed  Google Scholar 

  62. Bevan S, Hothi S, Hughes G et al (1992) CPZ: a competitive antagonist of the sensory neurone excitant capsaicin. Br J Pharmacol 107:544–552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mahmmoud YA (2008) Capsazepine, a synthetic vanilloid that converts the Na+, K+-ATPase to Na+-ATPase. Proc Natl Acad Sci U S A 105:1757–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yoda A, Yoda S (1987) Two different phosphorylation-dephosphorylation cycles of Na+, K+-ATPase proteoliposomes accompanying Na+ transport in the absence of K+. J Biol Chem 262:110–115

    CAS  PubMed  Google Scholar 

  65. Yoda A, Yoda S (1988) Cytoplasmic K+ effects on phosphoenzyme of Na+, K+-ATPase proteoliposomes and on the Na+ pump activity. J Biol Chem 263:10320–10325

    CAS  PubMed  Google Scholar 

  66. Mahmmoud YA, Shattock MJ, Cornelius F, Pavlovic D (2014) Inhibition of K+ transport through Na+,K+-ATPase. Role of membrane span 10 of the α-subunit in the modulation of ion gating. PLoS One 9(5):e96909. doi:10.1371/journal.pone.0096909

    Article  PubMed  PubMed Central  Google Scholar 

  67. Wang X, Horisberger J-D (1995) A conformation of Na+-K+ pump is permeable to proton. Am J Physiol Cell Physiol 268:C590–C595

    CAS  Google Scholar 

  68. Li C, Geering K, Horisberger J-D (2006) The third sodium binding site of Na+, K+-ATPase is functionally linked to acidic pH activated inward current. J Membr Biol 213:1–9

    Article  PubMed  Google Scholar 

  69. Vedovato N, Gadsby DC (2014) Route, mechanism, and implications of proton import during Na+/K+ exchange by native Na+/K+-ATPase pumps. J Gen Physiol 143:449–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mitchell TJ, Zugarramurdi C, Olivera JF et al (2014) Sodium and proton effects on inward proton transport through Na+/K+ pumps. Biophys J 106:2555–2565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li C, Capendeguy O, Geering K et al (2005) A third Na+ binding site in the sodium pump. Proc Natl Acad Sci U S A 102:12706–12711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hille B (1970) The hydration of sodium ions crossing the nerve membranes. Proc Natl Acad Sci U S A 68:280–282

    Article  Google Scholar 

  73. Hille B (1971) The permeability of the sodium channel to organic cations in myelinated nerve. J Gen Physiol 58:599–619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yaragatupalli S, Olivera JF, Gatto C et al (2009) Altered Na+ transport after an intracellular α-subunit deletion reveal strict external sequential release of Na+ from the Na+/K+ pump. Proc Natl Acad Sci U S A 106:15507–15512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ratheal IM, Virgin GK, Yu H et al (2010) Selectivity of externally facing ion-binding sites in the Na+/K+ pump to alkali metals and organic cations. Proc Natl Acad Sci U S A 107:18718–18723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jørgensen PL, Collins JH (1986) Tryptic and chymotryptic cleavage sites in sequence of α-subunit of Na+, K+-ATPase from outer medulla of mammalian kidney. Biochim Biophys Acta 860:570–576

    Article  PubMed  Google Scholar 

  77. Jørgensen PL, Farley RA (1988) Proteolytic cleavage as a tool for studying structure and conformation of pure membrane-bound Na+, K+-ATPase. Methods Enzymol 156:291–301

    Article  PubMed  Google Scholar 

  78. Kanai R, Ogawa H, Vilsen B et al (2013) Crystal structure of a Na+-bound Na+, K+-ATPase preceding the E1P state. Nature 502:201–206

    Article  CAS  PubMed  Google Scholar 

  79. Shinoda T, Ogawa H, Cornelius F et al (2009) Crystal structure of the sodium-potassium pump at 2.4 Å resolution. Nature 459:446–450

    Article  CAS  PubMed  Google Scholar 

  80. Kaczocha M, Glaser ST, Deutsch DG (2009) Identification of intracellular carriers for the endocannabinoid anandamide. Proc Natl Acad Sci U S A 106:6375–6380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Swarts HGP, Hermsen PH, Koenderink JB et al (1998) Constitutive activation of gastric H+, K+-ATPase by a single mutation. EMBO J 17:3029–3035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Toyoshima C, Nakasako M, Nomura H et al (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution. Nature 405:647–655

    Article  CAS  PubMed  Google Scholar 

  83. Toyoshima C, Nomura H (2002) Structural changes in the calcium pump accompanying the dissociation of calcium. Nature 418:605–611

    Article  CAS  PubMed  Google Scholar 

  84. Donnet C, Arystarkhova E, Sweadner KJ (2001) Thermal denaturation of the Na+, K+-ATPase provides evidence for α-α oligomeric interaction and γ subunit association with the C-terminal domain. J Biol Chem 276:7357–7365

    Article  CAS  PubMed  Google Scholar 

  85. Goldshleger R, Tal DM, Karlish SJD (1995) Topology of the alpha-subunit of Na+, K+-ATPase based on proteolysis. Liability of the topological organization. Biochemistry 34:8668–8679

    Article  CAS  PubMed  Google Scholar 

  86. Arystarkhova E, Gibbons DL, Sweadner KJ (1995) Topology of the Na+, K+-ATPase. Evidence for externalization of a labile transmembrane structure during heating. J Biol Chem 270:8785–8796

    Article  CAS  PubMed  Google Scholar 

  87. Mahmmoud YA, Cramb G, Maunsbach AB et al (2003) Regulation of Na+, K+-ATPase by PLMS, the phospholemman-like protein from shark: molecular cloning, sequence, expression, cellular distribution, and functional effects of PLMS. J Biol Chem 278:37427–37438

    Article  CAS  PubMed  Google Scholar 

  88. Morth JP, Pedersen BP, Toustrup-Jensen MS et al (2007) Crystal structure of the sodium-potassium pump. Nature 450:1043–1049

    Article  CAS  PubMed  Google Scholar 

  89. Tavraz NN, Friedrich T, Dürr K et al (2008) Diverse functional consequences of mutations in the Na+, K+-ATPase α2-subunit causing familial hemiplegic migraine type 2. J Biol Chem 283:31097–31106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Toustrup-Jensen MS, Holm R, Einholm AP et al (2009) The C terminus of Na+, K+-ATPase controls Na+ affinity on both sides of the membrane through Arg935. J Biol Chem 284:18715–18725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vedovato N, Gadsby DC (2010) The two C-terminal tyrosines stabilize occluded Na+/K+ pump conformations containing Na+ or K+ ions. J Gen Physiol 136:63–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Spiller S, Friedrich T (2014) Functional analysis of human Na+, K+-ATPase familial or sporadic hemiplegic migraine mutations expressed in Xenopus oocytes. World J Biol Chem 5:240–253

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

These studies were supported by a grant from the Novo Nordic Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser A. Mahmmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mahmmoud, Y.A. (2016). Uncoupling of P-Type ATPases. In: Chakraborti, S., Dhalla, N. (eds) Regulation of Membrane Na+-K+ ATPase. Advances in Biochemistry in Health and Disease, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-24750-2_13

Download citation

Publish with us

Policies and ethics