Skip to main content
Log in

The peroxisomal NAD+ carrier of Arabidopsis thaliana transports coenzyme A and its derivatives

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The peroxisomal protein PXN encoded by the Arabidopsis gene At2g39970 has very recently been found to transport NAD+, NADH, AMP and ADP. In this work we have reinvestigated the substrate specificity and the transport properties of PXN by using a wide range of potential substrates. Heterologous expression in bacteria followed by purification, reconstitution in liposomes, and uptake and efflux experiments revealed that PNX transports coenzyme A (CoA), dephospho-CoA, acetyl-CoA and adenosine 3′, 5′-phosphate (PAP), besides NAD+, NADH, AMP and ADP. PXN catalyzed fast counter-exchange of substrates and much slower uniport and was strongly inhibited by pyridoxal 5′-phosphate, bathophenanthroline and tannic acid. Transport was saturable with a submillimolar affinity for NAD+, CoA and other substrates. The physiological role of PXN is probably to provide the peroxisomes with the essential coenzymes NAD+ and CoA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrimi G, Di Noia MA, Marobbio CMT, Fiermonte G, Lasorsa FM, Palmieri F (2004) Identification of the human mitochondrial S-adenosylmethionine transporter: bacterial expression, reconstitution, functional characterization and tissue distribution. Biochem J 379:183–190

    Article  CAS  Google Scholar 

  • Agrimi G, Russo A, Scarcia P, Palmieri F (2012) The human gene SLC25A17 encodes a peroxisomal transporter of coenzyme A, FAD and NAD+. Biochem J 443:241–247

    Article  CAS  Google Scholar 

  • Aluvila S, Kotaria R, Sun J, Mayor JA, Walters DE, Harrison DHT, Kaplan RS (2010) The yeast mitochondrial citrate transport protein: molecular determinants of its substrate specificity. J Biol Chem 285:27314–27326

    Article  CAS  Google Scholar 

  • Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rebeille F, Ravanel S (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J Biol Chem 280:34823–34831

    Article  CAS  Google Scholar 

  • Bernhardt K, Wilkinson S, Weber APM, Linka N (2012) A peroxisomal carrier delivers NAD+ and contributes to optimal fatty acid degradation during storage oil mobilization. Plant J 69:1–13

    Article  CAS  Google Scholar 

  • Briggs C, Mincone L, Wohlrab H (1999) Replacements of basic and hydroxyl amino acids identify structurally and functionally sensitive regions of the mitochondrial phosphate transport protein. Biochemistry 38:5096–5102

    Article  CAS  Google Scholar 

  • Cappello AR, Curcio R, Miniero DV, Stipani I, Robinson AJ, Kunji ERS, Palmieri F (2006) Functional and structural role of amino acid residues in the even-numbered transmembrane α-helices of the bovine mitochondrial oxoglutarate carrier. J Mol Biol 363:51–62

    Article  CAS  Google Scholar 

  • Cappello AR, Miniero DV, Curcio R, Ludovico A, Daddabbo L, Stipani I, Robinson AJ, Kunji ERS, Palmieri F (2007) Functional and structural role of amino acid residues in the odd-numbered transmembrane α-helices of the bovine mitochondrial oxoglutarate carrier. J Mol Biol 369:400–412

    Article  CAS  Google Scholar 

  • Carrie C, Murcha MW, Millar AH, Smith SM, Whelan J (2007) Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana aretargeted either to peroxisomes or cytosol but not to mitochondria. Plant Mol Biol 63(1):97–108

    Article  CAS  Google Scholar 

  • de Lucas JR, Indiveri C, Tonazzi A, Perez P, Giangregorio N, Iacobazzi V, Palmieri F (2008) Functional characterisation of residues within the carnitine/acylcarnitine translocase RX2PANAAXF distinct motif. Mol Membr Biol 25:152–163

    Article  Google Scholar 

  • Echtay KS, Bienengraeber M, Klingenberg M (2001) Role of intrahelical arginine residues in functional properties of uncoupling protein (UCP1). Biochemistry 40:5243–5248

    Article  CAS  Google Scholar 

  • Eubel H, Meyer EH, Taylor NL, Bussell JD, O’Toole N, Heazlewood JL, Castleden I, Small ID, Smith SM, Millar AH (2008) Novel proteins, putative membrane transporters, and an integrated metabolic network are revealed by quantitative proteomic analysis of Arabidopsis cell culture peroxisomes. Plant Physiol 148:1809–1829

    Article  CAS  Google Scholar 

  • Fiermonte G, Walker JE, Palmieri F (1993) Abundant bacterial expression and reconstitution of an intrinsic membrane transport protein from bovine mitochondria. Biochem J 294:293–299

    CAS  Google Scholar 

  • Fiermonte G, Dolce V, Palmieri L, Ventura M, Runswick MJ, Palmieri F, Walker JE (2001) Identification of the human mitochondrial oxodicarboxylate carrier: bacterial expression, reconstitution, functional characterization, tissue distribution, and chromosomal location. J Biol Chem 276:8225–8230

    Article  CAS  Google Scholar 

  • Fiermonte G, Dolce V, David L, Santorelli FM, Dionisi-Vici C, Palmieri F, Walker JE (2003) The mitochondrial ornithine transporter: bacterial expression, reconstitution, functional characterization, and tissue distribution of two human isoforms. J Biol Chem 278:32778–32783

    Article  CAS  Google Scholar 

  • Fiermonte G, Paradies E, Todisco S, Marobbio CMT, Palmieri F (2009) A novel member of solute carrier family 25 (SLC25A42) is a transporter of coenzyme a and adenosine 3′,5′-diphosphate in human mitochondria. J Biol Chem 284:18152–18159

    Article  CAS  Google Scholar 

  • Floyd S, Favre C, Lasorsa FM, Leahy M, Trigiante G, Stroebel P, Marx A, Loughran G, O’Callaghan K, Marobbio CMT, Slotboom DJ, Kunji ERS, Palmieri F, O’Connor R (2007) The IGF-I-mTOR signaling pathway induces the mitochondrial pyrimidine nucleotide carrier to promote cell growth. Mol Biol Cell 18:3545–3555

    Article  CAS  Google Scholar 

  • Fukao Y, Hayashi Y, Mano S, Hayashi M, Nishimura M (2001) Developmental analysis of a putative ATP/ADP carrier protein localized on glyoxysomal membranes during the peroxisome transition in pumpkin cotyledons. Plant Cell Physiol 42:835–841

    Article  CAS  Google Scholar 

  • Fulda M, Shockey J, Werber M, Wolter FP, Heinz E (2002) Two long-chain acyl-CoA synthetases from Arabidopsis thaliana involved in peroxisomal fatty acid β-oxidation. Plant J 32(1):93–103

    Article  CAS  Google Scholar 

  • Fulda M, Schnurr J, Abbadi A, Heinz E, Browse J (2004) Peroxisomal Acyl-CoA synthetase activity is essential for seedling development in Arabidopsis thaliana. Plant cell 16(2):394–405

    Article  CAS  Google Scholar 

  • Germain V, Rylott EL, Larson TR, Sherson SM, Bechtold N, Carde J-P, Bryce JH et al (2001) Requirement for 3-ketoacyl-CoA thiolase-2 in peroxisome development, fatty acid β-oxidation and breakdown of triacylglycerol in lipid bodies of Arabidopsis seedlings. Plant J 28(1):1–12

    Article  CAS  Google Scholar 

  • Giangregorio N, Tonazzi A, Console L, Indiveri C, Palmieri F (2010) Site-directed mutagenesis of charged amino acids of the human mitochondrial carnitine/acylcarnitine carrier: insight into the molecular mechanism of transport. Biochim Biophys Acta 1797:839–845

    Article  CAS  Google Scholar 

  • Heidkämper D, Müller V, Nelson DR, Klingenberg M (1996) Probing the role of positive residues in the ADP/ATP carrier from yeast. The effect of six arginine mutations on transport and the four ATP versus ADP exchange modes. Biochemistry 35:16144–16152

    Article  Google Scholar 

  • Hoyos ME, Palmieri L, Wertin T, Arrigoni R, Polacco JC, Palmieri F (2003) Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant J 33:1027–1035

    Article  CAS  Google Scholar 

  • Indiveri C, Giangregorio N, Iacobazzi V, Palmieri F (2002) Site-directed mutagenesis and chemical modification of the six native cysteine residues of the rat mitochondrial carnitine carrier: implications for the role of cysteine-136. Biochemistry 41:8649–8656

    Article  CAS  Google Scholar 

  • Lawrence SA, Hackett JC, Moran RG (2011) Tetrahydrofolate recognition by the mitochondrial folate transporter. J Biol Chem 286:31480–31489

    Article  CAS  Google Scholar 

  • Lindhurst MJ, Fiermonte G, Song S, Struys E, De Leonardis F, Schwartzberg PL, Chen A, Castegna A, Verhoeven N, Mathews CK, Palmieri F, Biesecker LG (2006) Knockout of Slc25a19 causes mitochondrial thiamine pyrophosphate depletion, embryonic lethality, CNS malformations, and anemia. Proc Nat Acad Sci U S A 103:15927–15932

    Article  CAS  Google Scholar 

  • Linka N, Theodoulou FL, Haslam RP, Linka M, Napier JA, Neuhaus HE, Weber APM (2008) Peroxisomal ATP import is essential for seedling development in Arabidopsis thaliana. Plant Cell 20:3241–3257

    Article  CAS  Google Scholar 

  • Mano S, Nakamori C, Fukao Y, Araki M, Matsuda A, Kondo M, Nishimura M (2011) A defect of peroxisomal membrane protein 38 causes enlargement of peroxisomes. Plant Cell Physiol 52:2157–2172

    Article  CAS  Google Scholar 

  • Marobbio CMT, Agrimi G, Lasorsa FM, Palmieri F (2003) Identification and functional reconstitution of yeast mitochondrial carrier for S-adenosylmethionine. EMBO J 22:5975–5982

    Article  CAS  Google Scholar 

  • Marobbio CMT, Di Noia MA, Palmieri F (2006) Identification of the mitochondrial transporter for pyrimidine nucleotides in Saccharomyces cerevisiae: bacterial expression, reconstitution and functional characterization. Biochem J 393:441–446

    Article  CAS  Google Scholar 

  • Miniero DV, Cappello AR, Curcio R, Ludovico A, Daddabbo L, Stipani I, Robinson AJ, Kunji ERS, Palmieri F (2011) Functional and structural role of amino acid residues in the matrix α-helices, termini and cytosolic loops of the bovine mitochondrial oxoglutarate carrier. Biochim Biophys Acta 1807:302–310

    Article  CAS  Google Scholar 

  • Monné M, Miniero V, Daddabbo L, Robinson AJ, Kunji ERS, Palmieri F (2012) The substrate specificity of the two mitochondrial ornithine carriers can be swapped by a single mutation in the substrate binding site. J Biol Chem 287:7925–7934

    Article  Google Scholar 

  • Palmieri F (2012) The mitochondrial transporter family SLC25: identification, properties and physiopathology. Mol Aspects Med (in press)

  • Palmieri F, Pierri CL (2010a) Mitochondrial metabolite transport. Essays Biochem 47:37–52

    Article  CAS  Google Scholar 

  • Palmieri F, Pierri CL (2010b) Structure and function of mitochondrial carriers - Role of the transmembrane helix P and G residues in the gating and transport mechanism. FEBS Lett 584:1931–1939

    Article  CAS  Google Scholar 

  • Palmieri F, Indiveri C, Bisaccia F, Iacobazzi V (1995) Mitochondrial metabolite carrier proteins: purification, reconstitution and transport studies. Methods Enzymol 260:349–369

    Article  CAS  Google Scholar 

  • Palmieri L, Agrimi G, Runswick MJ, Fearnley IM, Palmieri F, Walker JE (2001a) Identification in Saccharomyces cerevisiae of two isoforms of a novel mitochondrial transporter for 2-oxoadipate and 2-oxoglutarate. J Biol Chem 276:1916–1922

    CAS  Google Scholar 

  • Palmieri L, Rottensteiner H, Girzalsky W, Scarcia P, Palmieri F, Erdmann R (2001b) Identification and functional reconstitution of the yeast peroxisomal adenine nucleotide transporter. EMBO J 20:5049–5059

    Article  CAS  Google Scholar 

  • Palmieri F, Agrimi G, Blanco E, Castegna A, Di Noia MA, Iacobazzi V, Lasorsa FM, Marobbio CMT, Palmieri L, Scarcia P, Todisco S, Vozza A, Walker J (2006a) Identification of mitochondrial carriers in Saccharomyces cerevisiae by transport assay of reconstituted recombinant proteins. Biochim Biophys Acta 1757:1249–1262

    Article  CAS  Google Scholar 

  • Palmieri L, Arrigoni R, Blanco E, Carrari F, Zanor MI, Studart-Guimareas C, Fernie AR, Palmieri F (2006b) Molecular identification of an Arabidopsis thaliana S-adenosylmethionine transporter: analysis of organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Plant Physiol 142:855–865

    Article  CAS  Google Scholar 

  • Palmieri L, Picault N, Arrigoni R, Besin E, Palmieri F, Hodges M (2008) Molecular identification of three Arabidopsis thaliana mitochondrial dicarboxylate carrier isoforms: organ distribution, bacterial expression, reconstitution into liposomes and functional characterization. Biochem J 410:621–629

    Article  CAS  Google Scholar 

  • Palmieri F, Rieder B, Ventrella A, Blanco E, Do PT, Nunes-Nesi A, Trauth AU, Fiermonte G, Tjaden J, Agrimi G et al (2009) Molecular identification and functional characterisation of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem 284:31249–31259

    Article  CAS  Google Scholar 

  • Palmieri F, Pierri CL, De Grassi A, Nunes-Nesi A, Fernie AR (2011) Evolution, structure and function of mitochondrial carriers: a review with new insights. Plant J 66:161–181

    Article  CAS  Google Scholar 

  • Pracharoenwattana I, Cornah JE, Smith SM (2005) Arabidopsis peroxisomal citrate synthase is required for fatty acid respiration and seed germination. Plant Cell Online 17(7):2037, Am Soc Plant Biol

    Article  CAS  Google Scholar 

  • Reumann S, Quan S, Aung K, Yang P, Manandhar-Shrestha K, Holbrook D, Linka N, Switzenberg R, Wilkerson CG, Weber AP, Olsen LJ, Hu J (2009) In-depth proteome analysis of Arabidopsis leaf peroxisomes combined with in vivo subcellular targeting verification indicates novel metabolic and regulatory functions of peroxisomes. Plant Physiol 150:125–143

    Article  CAS  Google Scholar 

  • Robinson A, Overy C, Kunji E (2008) The mechanism of transport by mitochondrial carriers based on analysis of symmetry. Proc Natl Acad Sci U S A 105:17766–17771

    Article  CAS  Google Scholar 

  • Stipani V, Cappello AR, Daddabbo L, Natuzzi D, Miniero DV, Stipani I, Palmieri F (2001) The mitochondrial oxoglutarate carrier: cysteine-scanning mutagenesis of transmembrane domain IV and sensitivity of cys mutants to sulphydryl reagents. Biochemistry 40:15805–15810

    Article  CAS  Google Scholar 

  • Titus SA, Moran RG (2000) Retrovirally mediated complementation of the glyB phenotype: cloning of a human gene encoding the carrier for entry of folates into mitochondria. J Biol Chem 275:36811–36817

    Article  CAS  Google Scholar 

  • Todisco S, Agrimi G, Castegna A, Palmieri F (2006) Identification of the mitochondrial NAD+ transporter in Saccharomyces cerevisiae. J Biol Chem 281:1524–1531

    Article  CAS  Google Scholar 

  • Tonazzi A, Giangregorio N, Indiveri C, Palmieri F (2005) Identification by site-directed mutagenesis and chemical modification of three vicinal cysteine residues in rat mitochondrial carnitine/acylcarnitine transporter. J Biol Chem 280:19607–19612

    Article  CAS  Google Scholar 

  • Tonazzi A, Console L, Giangregorio N, Indiveri C, Palmieri F (2012) Identification by site-directed mutagenesis of a hydrophobic binding site of the mitochondrial carnitine/acylcarnitine carrier involved in the interaction with acyl groups. Biochim Biophys Acta 1817:697–704

    Google Scholar 

  • Tzagoloff A, Jang J, Glerum DM, Wu M (1996) FLX1 codes for a carrier protein involved in maintaining a proper balance of flavin nucleotides in yeast mitochondria. J Biol Chem 271:7392–7397

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Palmieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrimi, G., Russo, A., Pierri, C.L. et al. The peroxisomal NAD+ carrier of Arabidopsis thaliana transports coenzyme A and its derivatives. J Bioenerg Biomembr 44, 333–340 (2012). https://doi.org/10.1007/s10863-012-9445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-012-9445-0

Keywords

Navigation