Skip to main content
Log in

Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

In this study we used tightly-coupled mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts, possessing a respiratory chain with the usual three points of energy conservation. High-amplitude swelling and collapse of the membrane potential were used as parameters for demonstrating induction of the mitochondrial permeability transition due to opening of a pore (mPTP). Mitochondria from Y. lipolytica, lacking a natural mitochondrial Ca2+ uptake pathway, and from D. magnusii, harboring a high-capacitive, regulated mitochondrial Ca2+ transport system (Bazhenova et al. J Biol Chem 273:4372–4377, 1998a; Bazhenova et al. Biochim Biophys Acta 1371:96–100, 1998b; Deryabina and Zvyagilskaya Biochemistry (Moscow) 65:1352–1356, 2000; Deryabina et al. J Biol Chem 276:47801–47806, 2001) were very resistant to Ca2+ overload. However, exposure of yeast mitochondria to 50–100 µM Ca2+ in the presence of the Ca2+ ionophore ETH129 induced collapse of the membrane potential, possibly due to activation of the fatty acid-dependent Ca2+/nH+-antiporter, with no classical mPTP induction. The absence of response in yeast mitochondria was not simply due to structural limitations, since large-amplitude swelling occurred in the presence of alamethicin, a hydrophobic, helical peptide, forming voltage-sensitive ion channels in lipid membranes. Ca2+- ETH129-induced activation of the Ca2+/H+-antiport system was inhibited and prevented by bovine serum albumin, and partially by inorganic phosphate and ATP. We subjected yeast mitochondria to other conditions known to induce the permeability transition in animal mitochondria, i.e., Ca2+ overload (in the presence of ETH129) combined with palmitic acid (Mironova et al. J Bioenerg Biomembr 33:319–331, 2001; Sultan and Sokolove Arch Biochem Biophys 386:37–51, 2001), SH-reagents, carboxyatractyloside (an inhibitor of the ADP/ATP translocator), depletion of intramitochondrial adenine nucleotide pools, deenergization of mitochondria, and shifting to acidic pH values in the presence of high phosphate concentrations. None of the above-mentioned substances or conditions induced a mPTP-like pore. It is thus evident that the permeability transition in yeast mitochondria is not coupled with Ca2+ uptake and is differently regulated compared to the mPTP of animal mitochondria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almeida B, Buttner S, Ohlmeier S, Silva A, Mesquita A, Sampaio-Marques B, Osório NS, Kollau A, Mayer B, Leão C, Laranjinha J, Rodrigues F, Madeo F, Ludovico P (2007) J Cell Sci 120:3279–3288

    Article  CAS  Google Scholar 

  • Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P (2008) Biochim Biophys Acta 1783:1436–1448

    Article  CAS  Google Scholar 

  • Andreishcheva EN, Soares MIM, Zvyagilskaya RA (1997) Russian J Plant Physiol 44:657–664

    Google Scholar 

  • Asimakis GK, Sordahl LA (1981) Am J Physiol 241:H671–H678

    Google Scholar 

  • Bazhenova EN, Deryabina YI, Eriksson O, Zvyagilskaya RA, Saris N-EL (1998a) J Biol Chem 273:4372–4377

    Article  CAS  Google Scholar 

  • Bazhenova EN, Saris N-E, Pentilla T, Zvyagilskaya RA (1998b) Biochim Biophys Acta 1371:96–100

    Article  CAS  Google Scholar 

  • Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA (2006) FEBS J 273:2077–2099

    Article  CAS  Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bradshaw PC, Jung DW, Pfeiffer DG (2001) J Biol Chem 276:40502–40509

    Article  CAS  Google Scholar 

  • Chance B, Williams GR (1955) Nature 175:1120–1121

    Article  CAS  Google Scholar 

  • Colin J, Garibal J, Mignotte B, Guénal I (2009) Biochem Biophys Res Commun 379:931–943

    Article  Google Scholar 

  • Deryabina YI, Zvyagilskaya RA (2000) Biochemistry (Moscow) 65:1352–1356

    Article  CAS  Google Scholar 

  • Deryabina YI, Bazhenova EN, Saris N-EL, Zvyagilskaya RA (2001) J Biol Chem 276:47801–47806

    CAS  Google Scholar 

  • Eisenberg T, Buttner S, Kroemer G (2007) Apoptosis 12:1011–1023

    Article  CAS  Google Scholar 

  • Fahrenkrog B, Sauder U, Aebi U (2004) J Cell Sci 117:115–126

    Article  CAS  Google Scholar 

  • Fannjiang Y, Cheng WC, Lee SJ, Qi B, Pevsner J, McCaffery JM, Hill RB, Basañez G, Hardwick JM (2004) Genes Dev 18:2785–2797

    Article  CAS  Google Scholar 

  • Gutiérrez-Aguilar M, Pérez-Vázquez V, Bunoust O, Manon S, Rigoulet M, Uribe S (2007) Biochim Biophys Acta 1767:1245–1251

    Article  Google Scholar 

  • Herker E, Jungwirth H, Lehmann KA, Maldener C, Fröhlich KU, Wissing S, Büttner S, Fehr M, Sigrist S, Madeo F (2004) J Cell Biol 164:501–507

    Article  CAS  Google Scholar 

  • Jamieson DJ (1998) Yeast 14:1511–1527

    Article  CAS  Google Scholar 

  • Jung DW, Bradshaw PC, Pfeiffer DR (1997) J Biol Chem 272:21104–21112

    Article  CAS  Google Scholar 

  • Kerr JF (2002) Toxicology 181–182:471–474

    Article  Google Scholar 

  • Kerscher S, Dröse S, Zwicker K, Zickermann V, Brandt U (2002) Biochim Biophys Acta 1555:83–91

    Article  CAS  Google Scholar 

  • Knorre DA, Dedukhova VI, Vyssokikh MY, Mokhova EN (2003) Biosci Rep 23(2–3):67–75

    Article  CAS  Google Scholar 

  • Kowaltowski AJ, Vercesi AE, Rhee SG, Netto LE (2000) FEBS Lett 473:177–180

    Article  CAS  Google Scholar 

  • Kristian T, Bernardi P, Siesjö BK (2001) J Neurotrauma 18:1059–1074

    Article  CAS  Google Scholar 

  • Laun P, Heeren G, Rinnerthaler M, Rid R, Kössler S, Koller L, Breitenbach M (2008) Biochim Biophys Acta 1783:1328–1334

    Article  CAS  Google Scholar 

  • Laun P, Rinnerthaler M, Bogengruber E, Heeren G, Breitenbach M (2006) Exp Gerontol 241:1208–1212

    Article  Google Scholar 

  • Leung AW, Halestrap AP (2008) Biochim Biophys Acta 1777:946–952

    Article  CAS  Google Scholar 

  • Lohret TA, Kinnally KW (1995) J Biophys 68:2299–2309

    Article  CAS  Google Scholar 

  • Low CP, Shui G, Liew LP, Buttner S, Madeo F, Dawes IW, Wenk MR, Yang H (2008) J Cell Sci 121:2671–2684

    Article  CAS  Google Scholar 

  • Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Côrte-Real M (2002) Mol Biol Cell 13:2598–2606

    Article  CAS  Google Scholar 

  • Lucken-Ardjomande S, Montessuit S, Martinou JC (2008) Cell Death Differ 15:923–937

    Google Scholar 

  • Madeo F, Fröhlich KU (2008) Biochim Biophys Acta 1783:1271

    Article  CAS  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lächelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Fröhlich KU (2002) Mol Cell 9:911–917

    Article  CAS  Google Scholar 

  • Madeo F, Herker E, Wissing S, Jungwirth H, Eisenberg T, Fröhlich KU (2004) Curr Opin Microbiol 7:655–660

    Article  CAS  Google Scholar 

  • Manon S, Guerin M (1998) Biochim Mol Bio Int 44:565–575

    CAS  Google Scholar 

  • Manon S, Roucou X, Guerin M, Rigoulet M, Guerin B (1998) J Bioenerg Biomembr 30:419–429

    Article  CAS  Google Scholar 

  • Matouschek A, Rospert S, Schmid K, Glick BS, Schatz G (1995) Proc Natl Acad Sci USA 92:6319–6323

    Article  CAS  Google Scholar 

  • Mironova GD, Lazareva A, Gateau-Roesch O, Tyynelä J, Zakirova R, Pavlov E, Vanier MT, Saris N-EL (1997) J Bioenerg Biomembr 26:261–269

    Google Scholar 

  • Mironova GD, Gateau-Roesch O, Levrat C, Gritsenko E, Pavlov E, Lazareva AV, Limarenko E, Rey C, Louisot P, Saris N-EL (2001) J Bioenerg Biomembr 33:319–331

    Article  CAS  Google Scholar 

  • Nicolli A, Basso E, Petronilli V, Wenger RM, Bernardi P (1996) J Biol Chem 271:2185–2192

    Article  CAS  Google Scholar 

  • Perrone GG, Tan SX, Dawes IW (2008) Biochim Biophys Acta 1783:1354–1368

    Article  CAS  Google Scholar 

  • Prieto S, Bouillaud F, Rial E (1995) Biochem J 307:657–661

    CAS  Google Scholar 

  • Prieto S, Bouillaud F, Rial E (1996) Arch Biochem Biophys 334:43–49

    Article  CAS  Google Scholar 

  • Prieto S, Bouillaud F, Ricquier D, Rial E (1992) Eur J Biochem 208:487–491

    Article  CAS  Google Scholar 

  • Reiter J, Herker E, Madeo F, Schmitt MJJ (2005) Cell Biol 168:353–358

    Article  CAS  Google Scholar 

  • Roucou X, Manon S, Guerin M (1997) Biochim Biophys Acta 1324:120–132

    Article  CAS  Google Scholar 

  • Schmitt MJ, Reiter J (2008) Biochim Biophys Acta 1783:1413–1417

    Article  CAS  Google Scholar 

  • Severin FF, Meer MV, Smirnova EA, Knorre DA, Skulachev VP (2008) Biochim Biophys Acta 1783:1350–1353

    Article  CAS  Google Scholar 

  • Silva RD, Sotoca R, Johansson B, Ludovico P, Sansonetty F, Silva MT, Peinado JM, Côrte-Real M (2005) Mol Microbiol 58:824–834

    Article  CAS  Google Scholar 

  • Sultan A, Sokolove PM (2001) Arch Biochem Biophys 386:37–51

    Article  CAS  Google Scholar 

  • Wissing S, Ludovico P, Herker E, Büttner S, Engelhardt SM, Decker T, Link A, Proksch A, Rodrigues F, Corte-Real M, Fröhlich KU, Manns J, Candé C, Sigrist SJ, Kroemer G, Madeo F (2004) J Cell Biol 166(7):969–974

    Article  CAS  Google Scholar 

  • Zvyagilskaya RA, Selenshchikova VA, Uralskaya LA, Kotelnikova AV (1981) Biochemistry (Moscow) 46:3–10

    CAS  Google Scholar 

  • Zvyagilskaya R, Andreishcheva E, Soares IMI, Khozin I, Berhe A, Persson BL (2001a) J Basic Microbiol 41:283–303

    Article  Google Scholar 

  • Zvyagilskaya R, Parchomenko O, Abramova N, Allard P, Panaretakis T, Pattison-Granberg J, Persson BL (2001b) J Membr Biol 183:39–50

    Article  CAS  Google Scholar 

  • Zvyagilskaya RA, Kovaleva MV, Sukhanova EI (2006) Biochim Biophys Acta Bioenergetics Short Reports 14th EBEC 14:336

    Google Scholar 

  • Zvyagilskaya RA, Zyl’kova MV, Sukhanova EI, Kovaleva MV, Trendeleva TA (2008) Biochim Biophys Acta Bioenergetics, Short Reports 15th EBEC S32

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata A. Zvyagilskaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovaleva, M.V., Sukhanova, E.I., Trendeleva, T.A. et al. Induction of a non-specific permeability transition in mitochondria from Yarrowia lipolytica and Dipodascus (Endomyces) magnusii yeasts. J Bioenerg Biomembr 41, 239–249 (2009). https://doi.org/10.1007/s10863-009-9227-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-009-9227-5

Keywords

Navigation