Skip to main content
Log in

The Saccharomyces cerevisiae mitochondrial unselective channel behaves as a physiological uncoupling system regulated by Ca2+, Mg2+, phosphate and ATP

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

It is proposed that the Saccharomyces cerevisiae the Mitochondrial Unselective Channel ( Sc MUC) is tightly regulated constituting a physiological uncoupling system that prevents overproduction of reactive oxygen species (ROS). Mg2+, Ca2+ or phosphate (Pi) close Sc MUC, while ATP or a high rate of oxygen consumption open it. We assessed Sc MUC activity by measuring in isolated mitochondria the respiratory control, transmembrane potential (ΔΨ), swelling and production of ROS. At increasing [Pi], less [Ca2+] and/or [Mg2+] were needed to close Sc MUC or increase ATP synthesis. The Ca2+-mediated closure of Sc MUC was prevented by high [ATP] while the Mg2+ or Pi effect was not. When Ca2+ and Mg2+ were alternatively added or chelated, Sc MUC opened and closed reversibly. Different effects of Ca2+ vs Mg2+ effects were probably due to mitochondrial Mg2+ uptake. Our results suggest that Sc MUC activity is dynamically controlled by both the ATP/Pi ratio and divalent cation fluctuations. It is proposed that the reversible opening/closing of Sc MUC leads to physiological uncoupling and a consequent decrease in ROS production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

PT:

permeability transition

Sc MUC:

Saccharomyces cerevisiae Mitochondrial Unselective Channel

PTP:

Permeability Transition Pore

ANC:

Adenine Nucleotide Carrier

VDAC:

Voltage Dependent Anion Channel

PiC:

Phosphate Carrier

CCCP:

carbonyl cyanide 3-chlorophenylhydrazone

ΔΨ:

Transmembrane Potential

ROS:

Reactive Oxygen Species

EDTA:

Ethylene-diamine-tetra-acetic acid

EGTA:

ethylene-glycol-tetra-acetic acid

References

  • Akerman KE, Wikström MK (1976) Safranine as a probe of the mitochondrial membrane potential. FEBS Lett 68(2):191–197

    Article  CAS  Google Scholar 

  • Azzolin L, von Stockum S, Basso E, Petronilli V, Forte MA, Bernardi P (2010) The mitochondrial permeability transition from yeast to mammals. FEBS Lett 584(12):2504–2509

    Article  CAS  Google Scholar 

  • Baines CP (2009) The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol 104(2):181–188

    Article  CAS  Google Scholar 

  • Beeler T, Bruce K, Dunn T (1997) Regulation of cellular Mg2+ by Saccharomyces cerevisiae. Biochim Biophys Acta 1323(2):310–318

    Article  CAS  Google Scholar 

  • Bernardi P, Veronese P, Petronilli V (1993) Modulation of the mitochondrial cyclosporin a-sensitive permeability transition pore. I. Evidence for two separate Me2+ binding sites with opposing effects on the pore open probability. J Biol Chem 268(2):1005–1010

    CAS  Google Scholar 

  • Bradshaw PC, Pfeiffer DR (2006) Release of Ca2+ and Mg2+ from yeast mitochondria is stimulated by increased ionic strength. BMC Biochem 7:1–4

    Article  Google Scholar 

  • Bradshaw PC, Pfeiffer DR (2013) Characterization of the respiration-induced yeast mitochondrial permeability transition pore. Yeast 30(12):471–483

    Article  CAS  Google Scholar 

  • Cabrera-Orefice A, Guerrero-Castillo S, Luevano-Martinez LA, Pena A, Uribe-Carvajal S (2010) Mitochondria from the salt-tolerant yeast debaryomyces hansenii (halophilic organelles?). J Bioenerg Biomembr 42(1):11–19

    Article  CAS  Google Scholar 

  • Carafoli E (2010) The fateful encounter of mitochondria with calcium: how did it happen? Biochim Biophys Acta 1797(6–7):595–606

    Article  CAS  Google Scholar 

  • Carafoli E, Balcavage WX, Lehninger AL, Mattoon JR (1970) Ca2+ metabolism in yeast cells and mitochondria. Biochim Biophys Acta 205(1):18–26

    Article  CAS  Google Scholar 

  • Carraro M, Giorgio V, Sileikyte J, Sartori G, Forte M, Lippe G, Zoratti M, Szabo I, Bernardi P (2014) Channel formation by yeast F-ATP synthase and the role of dimerization in the mitochondrial permeability transition. J. Biol. Chem 289(23):15980–15985

    Article  CAS  Google Scholar 

  • Castrejon V, Parra C, Moreno R, Pena A, Uribe S (1997) Potassium collapses the deltaP in yeast mitochondria while the rate of ATP synthesis is inhibited only partially: modulation by phosphate. Arch Biochem Biophys 346(1):37–44

    Article  CAS  Google Scholar 

  • Cavalheiro RA, Fortes F, Borecky J, Faustinoni VC, Schreiber AZ, Vercesi AE (2004) Respiration, oxidative phosphorylation, and uncoupling protein in Candida albicans. Braz J Med Biol Res 37(10):1455–1461

    Article  CAS  Google Scholar 

  • Correa F, Soto V, Zazueta C (2007) Mitochondrial permeability transition relevance for apoptotic triggering in the post-ischemic heart. Int J Biochem Cell Biol 39(4):787–798

    Article  CAS  Google Scholar 

  • Cortes P, Castrejon V, Sampedro JG, Uribe S (2000) Interactions of arsenate, sulfate and phosphate with yeast mitochondria. Biochim Biophys Acta 1456(2–3):67–76

    Article  CAS  Google Scholar 

  • Cunningham KW, Fink GR (1994) Ca2+ transport in Saccharomyces cerevisiae. J Exp Biol 196:157–166

    CAS  Google Scholar 

  • de la Fuente S, Montenegro P, Fonteriz RI, Moreno A, Lobaton CD, Montero M, Alvarez J (2010) The dynamics of mitochondrial Ca(2+) fluxes. Biochim Biophys Acta 1797(10):1727–1735

    Article  Google Scholar 

  • Dejean L, Beauvoit B, Bunoust O, Fleury C, Guerin B, Rigoulet M (2001) The calorimetric-respirometric ratio is an on-line marker of enthalpy efficiency of yeast cells growing on a non-fermentable carbon source. Biochim Biophys Acta 1503(3):329–340

    Article  CAS  Google Scholar 

  • De-kloet SR, Van Wermeskerken RKA, Konigsberger VV (1961) Studies of protein synthesis by protoplasts of Saccharomyces cerevisiae. Biochim Biophys Acta 47:138–146

    Article  CAS  Google Scholar 

  • Fonteriz RI, de la Fuente S, Moreno A, Lobaton CD, Montero M, Alvarez J (2010) Monitoring mitochondrial [Ca(2+)] dynamics with rhod-2, ratiometric pericam and aequorin. Cell Calcium 48(1):61–69

    Article  CAS  Google Scholar 

  • Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358(Pt 1):147–155

    Article  CAS  Google Scholar 

  • Goncalves RL, Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Brand MD (2015) Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290(1):209–227

    Article  CAS  Google Scholar 

  • Gornal AG, Bardavill CJ, David MM (1949) Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177:751–760

    Google Scholar 

  • Guerin B, Bunoust O, Rouqueys V, Rigoulet M (1994) ATP-induced unspecific channel in yeast mitochondria. J. Biol. Chem. 269(41):25406–25410

    CAS  Google Scholar 

  • Guerrero-Castillo S, Vazquez-Acevedo M, Gonzalez-Halphen D, Uribe-Carvajal S (2009) In yarrowia lipolytica mitochondria, the alternative NADH dehydrogenase interacts specifically with the cytochrome complexes of the classic respiratory pathway. Biochim Biophys Acta 1787(2):75–85

    Article  CAS  Google Scholar 

  • Guerrero-Castillo S, Araiza-Olivera D, Cabrera-Orefice A, Espinasa-Jaramillo J, Gutierrez-Aguilar M, Luevano-Martinez LA, Zepeda-Bastida A, Uribe-Carvajal S (2011) Physiological uncoupling of mitochondrial oxidative phosphorylation. Studies in different yeast species. J Bioenerg Biomembr 43(3):323–331

    Article  CAS  Google Scholar 

  • Guerrero-Castillo S, Cabrera-Orefice A, Vazquez-Acevedo M, Gonzalez-Halphen D, Uribe-Carvajal S (2012) During the stationary growth phase, yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway. Biochim Biophys Acta 1817(2):353–362

    Article  CAS  Google Scholar 

  • Gutierrez-Aguilar M, Perez-Vazquez V, Bunoust O, Manon S, Rigoulet M, Uribe S (2007) In yeast, Ca2+ and octylguanidine interact with porin (VDAC) preventing the mitochondrial permeability transition. Biochim Biophys Acta 1767(10):1245–1251

    Article  CAS  Google Scholar 

  • Gutierrez-Aguilar M, Perez-Martinez X, Chavez E, Uribe-Carvajal S (2010) In Saccharomyces cerevisiae, the phosphate carrier is a component of the mitochondrial unselective channel. Arch Biochem Biophys 494(2):184–191

    Article  CAS  Google Scholar 

  • Gutierrez-Aguilar M, Uribe-Carvajal S (2015) The mitochondrial unselective channel in Saccharomyces cerevisiae. Mitochondrion 22:85--90

  • Ichas F, Mazat JP (1998) From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta 1366(1–2):33–50

    Article  CAS  Google Scholar 

  • Iida H, Sakaguchi S, Yagawa Y, Anraku Y (1990a) Cell cycle control by Ca2+ in Saccharomyces cerevisiae. J Biol Chem 265(34):21216–21222

    CAS  Google Scholar 

  • Iida H, Yagawa Y, Anraku Y (1990b) Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J. Biol. Chem. 265(22):13391–13399

    CAS  Google Scholar 

  • Janssen JW, Helbing AR (1991) Arsenazo III: an improvement of the routine calcium determination in serum. Eur J Clin Chem Clin Biochem 29(3):197–201

    CAS  Google Scholar 

  • Jung DW, Brierley GP (1986) Matrix magnesium and the permeability of heart mitochondria to potassium ion. J. Biol. Chem. 261(14):6408–6415

    CAS  Google Scholar 

  • Jung DW, Bradshaw PC, Pfeiffer DR (1997) Properties of a cyclosporin-insensitive permeability transition pore in yeast mitochondria. J. Biol. Chem. 272(34):21104–21112

    Article  CAS  Google Scholar 

  • Kolisek M, Zsurka G, Samaj J, Weghuber J, Schweyen RJ, Schweigel M (2003) Mrs2p is an essential component of the major electrophoretic Mg2+ influx system in mitochondria. EMBO J 22(6):1235–1244

    Article  CAS  Google Scholar 

  • Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 416(1):15–18

    Article  CAS  Google Scholar 

  • Kovacs-Bogdan E, Sancak Y, Kamer KJ, Plovanich M, Jambhekar A, Huber RJ, Myre MA, Blower MD, Mootha VK (2014) Reconstitution of the mitochondrial calcium uniporter in yeast. Proc Natl Acad Sci U S A 111(24):8985–8990

    Article  CAS  Google Scholar 

  • Kovaleva MV, Sukhanova EI, Trendeleva TA, Zyl'kova MV, Ural'skaya LA, Popova KM, Saris NE, Zvyagilskaya RA (2009) Induction of a non-specific permeability transition in mitochondria from yarrowia lipolytica and dipodascus (endomyces) magnusii yeasts. J Bioenerg Biomembr 41(3):239–249

    Article  CAS  Google Scholar 

  • Lemasters JJ (2007) Modulation of mitochondrial membrane permeability in pathogenesis, autophagy and control of metabolism. J Gastroenterol Hepatol 22(Suppl 1):S31–S37

    Article  CAS  Google Scholar 

  • Luevano-Martinez LA, Moyano E, de Lacoba MG, Rial E, Uribe-Carvajal S (2010) Identification of the mitochondrial carrier that provides yarrowia lipolytica with a fatty acid-induced and nucleotide-sensitive uncoupling protein-like activity. Biochim Biophys Acta 1797(1):81–88

    Article  CAS  Google Scholar 

  • Malhi H, Gores GJ, Lemasters JJ (2006) Apoptosis and necrosis in the liver: a tale of two deaths? Hepatology 43(2 Suppl 1):S31–S44

    Article  CAS  Google Scholar 

  • Manon S (1999) Dependence of yeast mitochondrial unselective channel activity on the respiratory chain. Biochim Biophys Acta 1410(1):85–90

    Article  CAS  Google Scholar 

  • Manon S, Guerin M (1997) The ATP-induced K(+)-transport pathway of yeast mitochondria may function as an uncoupling pathway. Biochim Biophys Acta 1318(3):317–321

    Article  CAS  Google Scholar 

  • Manon S, Guerin M (1998) Investigation of the yeast mitochondrial unselective channel in intact and permeabilized spheroplasts. Biochem Mol Biol Int 44(3):565–575

    CAS  Google Scholar 

  • Manon S, Roucou X, Guerin M, Rigoulet M, Guerin B (1998) Characterization of the yeast mitochondria unselective channel: a counterpart to the mammalian permeability transition pore? J Bioenerg Biomembr 30(5):419–429

    Article  CAS  Google Scholar 

  • Moore AL, Bonner WD (1982) Measurements of membrane potentials in plant mitochondria with the safranine method. Plant Physiol 70(5):1271–1276

    Article  CAS  Google Scholar 

  • Nakajima-Shimada J, Sakaguchi S, Tsuji FI, Anraku Y, Iida H (2000) Ca2+ signal is generated only once in the mating pheromone response pathway in Saccharomyces cerevisiae. Cell Struct Funct 25(2):125–131

    Article  CAS  Google Scholar 

  • Pavon N, Aranda A, Garcia N, Hernandez-Esquivel L, Chavez E (2009) In hyperthyroid rats octylguanidine protects the heart from reperfusion damage. Endocrine 35(2):158–165

    Article  CAS  Google Scholar 

  • Perez-Vazquez V, Saavedra-Molina A, Uribe S (2003) In Saccharomyces cerevisiae, cations control the fate of the energy derived from oxidative metabolism through the opening and closing of the yeast mitochondrial unselective channel. J Bioenerg Biomembr 35(3):231–241

    Article  CAS  Google Scholar 

  • Petronilli V, Miotto G, Canton M, Brini M, Colonna R, Bernardi P, Di Lisa F (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76(2):725–734

    Article  CAS  Google Scholar 

  • Popov VN, Simonian RA, Skulachev VP, Starkov AA (1997) Inhibition of the alternative oxidase stimulates H2O2 production in plant mitochondria. FEBS Lett 415(1):87–90

    Article  CAS  Google Scholar 

  • Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF (2005) Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 168(2):257–269

    Article  CAS  Google Scholar 

  • Prieto S, Bouillaud F, Ricquier D, Rial E (1992) Activation by ATP of a proton-conducting pathway in yeast mitochondria. Eur J Biochem 208(2):487–491

    Article  CAS  Google Scholar 

  • Prieto S, Bouillaud F, Rial E (1995) The mechanism for the ATP-induced uncoupling of respiration in mitochondria of the yeast Saccharomyces cerevisiae. Biochem J 307(Pt 3):657–661

    Article  CAS  Google Scholar 

  • Quinlan CL, Perevoshchikova IV, Hey-Mogensen M, Orr AL, Brand MD (2013) Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol 1:304–312

    Article  CAS  Google Scholar 

  • Raffaello A, De Stefani D, Rizzuto R (2012) The mitochondrial Ca(2+) uniporter. Cell Calcium 52(1):16–21

    Article  CAS  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86(1):369–408

    Article  CAS  Google Scholar 

  • Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262(5134):744–747

    Article  CAS  Google Scholar 

  • Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787(11):1342–1351

    Article  CAS  Google Scholar 

  • Roucou X, Manon S, Guerin M (1995) ATP opens an electrophoretic potassium transport pathway in respiring yeast mitochondria. FEBS Lett 364(2):161–164

    Article  CAS  Google Scholar 

  • Roucou X, Manon S, Guerin M (1997) Conditions allowing different states of ATP- and GDP-induced permeability in mitochondria from different strains of Saccharomyces cerevisiae. Biochim Biophys Acta 1324(1):120–132

    Article  CAS  Google Scholar 

  • Scarpa A, Brinley FJ, Tiffert T, Dubyak G (1978) METALLOCHROMIC INDICATORS OF IONIZED CALCIUM. Ann N Y Acad Sci 307:86–112

    Article  CAS  Google Scholar 

  • Schindl R, Weghuber J, Romanin C, Schweyen RJ (2007) Mrs2p forms a high conductance Mg2+ selective channel in mitochondria. Biophys J 93(11):3872–3883

    Article  CAS  Google Scholar 

  • Shoshan-Barmatz V, Ashley RH (1998) The structure, function, and cellular regulation of ryanodine-sensitive Ca2+ release channels. Int Rev Cytol 183:185–270

    Article  CAS  Google Scholar 

  • Skulachev VP (1996) Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett 397(1):7–10

    Article  CAS  Google Scholar 

  • Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 a resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747

    Article  CAS  Google Scholar 

  • Uribe S, Ramirez J, Pena A (1985) Effects of beta-pinene on yeast membrane functions. J Bacteriol 161(3):1195–1200

    CAS  Google Scholar 

  • Uribe S, Rangel P, Pardo JP (1992) Interactions of calcium with yeast mitochondria. Cell Calcium 13(4):211–217

    Article  CAS  Google Scholar 

  • Uribe S, Rangel P, Pardo JP, Pereira-Da-Silva L (1993) Interactions of calcium and magnesium with the mitochondrial inorganic pyrophosphatase from Saccharomyces cerevisiae. Eur J Biochem 217(2):657–660

    Article  CAS  Google Scholar 

  • Uribe-Carvajal S, Luevano-Martinez LA, Guerrero-Castillo S, Cabrera-Orefice A, Corona-de-la-Pena NA, Gutierrez-Aguilar M (2011) Mitochondrial unselective channels throughout the eukaryotic domain. Mitochondrion 11(3):382–390

    Article  CAS  Google Scholar 

  • van der Laan M, Hutu DP, Rehling P (2010) On the mechanism of preprotein import by the mitochondrial presequence translocase. Biochim Biophys Acta 1803(6):732–739

    Article  Google Scholar 

  • Wallace PG, Pedler SM, Wallace JC, Berry MN (1994) A method for the determination of the cellular phosphorylation potential and glycolytic intermediates in yeast. Anal Biochem 222(2):404–408

    Article  CAS  Google Scholar 

  • Yamada A, Yamamoto T, Yoshimura Y, Gouda S, Kawashima S, Yamazaki N, Yamashita K, Kataoka M, Nagata T, Terada H, Pfeiffer DR, Shinohara Y (2009) Ca2+-induced permeability transition can be observed even in yeast mitochondria under optimized experimental conditions. Biochim Biophys Acta 1787(12):1486–1491

    Article  CAS  Google Scholar 

  • Zhou M, Diwu Z, Panchuk-Voloshina N, Haugland RP (1997) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Anal Biochem 253(2):162–168

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Natalia Chiquete-Félix and Ramón Méndez for technical assistance. Partially funded by CONACYT grant 239487 and PAPIIT-UNAM IN204015. ACO is a CONACYT fellow enrolled in the Biochemistry PhD program at UNAM. LALM is supported by a postdoctoral fellowship from the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process number 2013/04919-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvador Uribe-Carvajal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cabrera-Orefice, A., Ibarra-García-Padilla, R., Maldonado-Guzmán, R. et al. The Saccharomyces cerevisiae mitochondrial unselective channel behaves as a physiological uncoupling system regulated by Ca2+, Mg2+, phosphate and ATP. J Bioenerg Biomembr 47, 477–491 (2015). https://doi.org/10.1007/s10863-015-9632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10863-015-9632-x

Keywords

Navigation